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Preface

The 16th International Workshop on Implementation and Application of Func-
tional Languages (IFL 2004) was held in Lübeck, Germany, September 8–10,
2004. It was jointly organized by the Institute of Computer Science and Applied
Mathematics of the University of Kiel and the Institute of Software Technology
and Programming Languages of the University of Lübeck.

IFL 2004 was the sixteenth event in the annual series of IFL workshops. The
aim of the workshop series is to bring together researchers actively engaged in
the implementation and application of functional and function-based program-
ming languages. It provides an open forum for researchers who wish to present
and discuss new ideas and concepts, work in progress, preliminary results, etc.,
related primarily, but not exclusively, to the implementation and application of
functional languages. Topics of interest cover a wide range from theoretical as-
pects over language design and implementation towards applications and tool
support.

Previous IFL workshops were held in the United Kingdom (Southampton,
Norwich, London, St Andrews, and Edinburgh), in the Netherlands (Nijmegen
and Lochem), in Germany (Aachen and Bonn), in Sweden (B̊astad and Stock-
holm), and in Spain (Madrid). In 2005, the 17th International Workshop on Im-
plementation and Application of Functional Languages will be held in Dublin,
Ireland.

As an innovation for IFL 2004, the term “application” was added to the
workshop name; it was previously known as the International Workshop on Im-
plementation of Functional Languages. This change was made after an intensive
discussion following IFL 2003 in Edinburgh. Our aim was to reflect the broader
scope IFL has gained over recent years and to make IFL even more attractive
for researchers in the future. Continuity with previous workshops is expressed
by keeping the well-known and familiar acronym IFL.

IFL 2004 attracted 59 researchers from 11 different countries. Most partici-
pants came from Europe: 13 from the United Kingdom, 6 from the Netherlands,
4 from Spain, 3 each from Denmark, Ireland, and France, 1 from Hungary, and
20 from Germany. We also welcomed 2 participants each from the United States,
Mexico, and Australia. During the three days of the workshop 40 presentations
were given, organized into 10 individual sessions. The draft proceedings dis-
tributed during the workshop contained 37 contributions. They were published
as Technical Report 0408 of the Institute of Computer Science and Applied
Mathematics of the University of Kiel.

This volume follows the IFL tradition since 1996 in publishing a high-quality
subset of contributions presented at the workshop in the Springer Lecture Notes
in Computer Science series. All participants who gave a presentation at the
workshop were invited to resubmit revised versions of their contributions after



VI Preface

the workshop. We received 27 papers, each of which was reviewed by four mem-
bers of the international Programme Committee according to normal conference
standards. Following an intensive discussion the Programme Committee selected
13 papers to be included in this volume.

Since 2002 the Peter Landin Prize has been awarded annually to the author or
the authors of the best workshop paper. The Programme Committee was pleased
to give this prestigious award to Olivier Danvy for his contribution A Rational
Deconstruction of Landin’s SECD Machine. Previous Peter Landin Prize winners
were Arjen van Weelden, Rinus Plasmeijer, and Pedro Vasconcelos.

IFL 2004 was generously sponsored by Deutsche Forschungsgemeinschaft
(German Research Foundation), Innovationszentrum Lübeck, and the organizing
institutes and universities. We are grateful to our sponsors for their financial and
organizational support. We wish to thank all participants of IFL 2004 who made
this workshop the successful event it was. Last but not least, we are indebted
to the members of the Programme Committee who completed more than 100
reviews in a very short time frame.

March 2005 Clemens Grelck, Frank Huch,
Greg Michaelson, Phil Trinder
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Additional Reviewers

Peter Achten
Jost Berthold
Bernd Braßel
Olaf Chitil
Xiao Yan Deng
Santiago Escobar
David de Frutos
John van Groningen
Christian Haack
Michael Hanus
Mercedes Hidalgo-Herrero
Steffen Jost
Gabriele Keller
Pieter Koopman
Wolfgang Küchlin
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Exploiting Single-Assignment Properties to Optimize 
Message-Passing Programs by Code Transformations 

Alfredo Cristóbal-Salas1, Andrey Chernykh2, Edelmira Rodríguez-Alcantar3,  
and Jean-Luc Gaudiot4 (*) 

1 School of Chemistry Science and Engineering, Autonomous University of Baja California, 
Tijuana, Baja California, Mexico, 22390  

cristobal@uabc.mx  
2 Computer Science Department, CICESE Research Center,  

Ensenada, Baja California, Mexico, 22830  
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3 Computer Science; University of Sonora,Hermosillo, Sonora, 
 Mexico, 83000  

edelmira@mat.uson.mx 
4 Electrical Engineering and Computer Science, University of California, Irvine,  

Irvine, California, USA, 92697 
gaudiot@uci.edu 

Abstract. The message-passing paradigm is now widely accepted and used 
mainly for inter-process communication in distributed memory parallel systems. 
However, one of its disadvantages is the high cost associated with the data ex-
change. Therefore, in this paper, we describe a message-passing optimization 
technique based on the exploitation of single-assignment and constant informa-
tion properties to reduce the number of communications. Similar to the more 
general partial evaluation approach, technique evaluates local and remote mem-
ory operations when only part of the input is known or available; it further spe-
cializes the program with respect to the input data. It is applied to the programs, 
which use a distributed single-assignment memory system. Experimental results 
show a considerable speedup in programs running in computer systems with 
slow interconnection networks. We also show that single assignment memory 
systems can have better network latency tolerance and the overhead introduced 
by its management can be hidden. 

1 Introduction 

The exchange of information remains as a critical bottleneck in distributed memory 
systems. Exchanging information by message passing is a popular technique in dis-
tributed environment. Furthermore, with the proliferation of clusters and GRID tech-
nology, the message passing paradigm has significantly increased in popularity. How-
ever, its major drawback is the inherently high communication costs. Communication 
cost depends on memory manipulation overhead (message preparation, message in-
terpretation) and network communication delays. 
_______________________________ 
(*)  Authors are listed in alphabetical order. 
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There are several strategies to minimize this cost such as computation and commu-
nication overlapping, network optimization, or reduction of number of messages 
(message coalescing, caching messages, etc). Consequently, reducing this cost is vital 
to achieve good performance.  

In this paper we present how to reduce communication cost of parallel programs 
for distributed memory systems. Technique eliminates synchronization issues by non-
strict data access and fully asynchronous operations. It also combines functional pro-
gramming techniques such: I-Structures [2] and partial evaluation [11] together with 
classical program optimization like constant-propagation, loop unrolling and dead-
code elimination. As a contribution of this paper, we provide detailed description 
about code transformations needed to partially evaluate memory accesses when part 
of the program’s input information is available. We use single-assignment I-
Structures to facilitate asynchronous access when structure production and consump-
tion can be allowed to proceed with a looser synchronization. When a read operation 
occurs before a write operation, the deferred request is queued on a linked list of that 
particular I-Structure element. When the write operation finally occurs, the system re-
sponds to the deferred reads by distributing the written value to the requesters, which 
have been received in the meantime.  

On the other hand, partial evaluation [11,18] is an automatic program transforma-
tion technique which allows the partial execution of a program when only some of its 
input data are available (static), and specializes it by pre-computing parts of the pro-
gram that depend on specific parameter settings. It has been shown in [9, 14] that the 
majority of communications in scientific programs are static, that is, the communica-
tion information can be determined at compile time. Some experiments which show 
how MPI parallel programs can be optimized by using static information can be found 
in [20]. These characteristics can be exploited in message passing paradigm to elimi-
nate memory request at compile time. Elimination of memory accesses may improve 
performance of parallel programs running in architectures with high latency intercon-
nection networks such as wide area networks or grids. Even though our technique 
works directly with MPI as communication layer, it can be applied to other communi-
cation libraries.  

The rest of the paper is organized as follows: in section 2 a general description of 
proposed optimization technique is presented. In section 3, we provide detailed in-
formation how optimization technique works using an example of code transforma-
tion. Experimental results can be found in section 4. Related work is presented in sec-
tion 5. Finally, some conclusions are presented.  

2 General Description of the Optimization Technique 

In [8], this optimization technique is proposed. This technique is based on a particular 
case of partial evaluation approach where parallel programs evaluation is performed 
when only part of their input is given. It reduces the number of messages in single-
assignment distributed memory systems by exploiting constant information. For in-
stance, matrix multiplication can be evaluated when matrices size and number of 
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processes are known, but with unknown matrices elements values. Obviously, pro-
gram evaluation cannot be completed but it is possible to create a residual program 
(optimized one). When remaining input data become available, residual program can 
continue evaluations. This residual program can be run as many times as needed, and 
it is expected to be faster than executing the original program.  

Fig. 1 shows a general view of this new technique. Parallel program code and a set 
of constant values are given as an input. The output is a residual (optimized) code 
where all constant memory accesses have been eliminated. Two main steps are con-
sidered: pre-processing and message elimination. 

 

Fig. 1. General view of the optimization technique 

In the preprocessing step, code is transformed to facilitate detection of static mem-
ory accesses. Main-body code is replicated in accordance with the number of proc-
esses given, constants are propagated, dead code is eliminated, and loops are unrolled. 

In the message elimination step, static memory accesses are evaluated by inserting 
a special instruction in the corresponding remote process code to locally perform the 
remote request. After the evaluation of all static memory requests, a second review of 
code is performed to complete execution of all requests that refer to elements already 
defined. Before going into details, we review design of Distributed I-Structure mem-
ory system. More information about it can be found in [6, 7]. 

2.1 Distributed I-Structure Memory System (D-IS) 

D-IS is a communication library for distributed memory systems that implements the 
functionality of I-Structures [2] on top of MPI (Fig. 2). Each MPI process manages a 
local I-Structure memory system arranged in a linked list. Remote operations are per-
formed using split-phase transactions and they are implemented using MPI point-to-
point routine calls. Exchange of information involves a send-request, receive-value on 
the requester side and receive-request, and send-value on the side of the owner of the 
I-Structure. D-IS permits consulting an I-Structure element even before a value is 
bound to that memory location. This feature breaks the restrictions unnecessarily im-
posed by sequential systems, which demand the complete production of data before 
consumption. The write policy is write-through to ensure data will be available as 
soon it is produced. D-IS is a further research of the I-Structure memory system pre-
sented in [15]. As D-IS runs on top of MPI, it has most of its features such as portabil-
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ity and efficient implementation in several architectures. The D-IS memory system 
has been tested in a NUMA S2MP ORIGIN 2000 and in a Pentium III cluster.  
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Fig. 2. Graphical representation of the D-IS 

3 Functionality of Optimization Technique  

Before presenting functionality of proposed technique, we first describe the syntax of 
the main function routines. 

3.1 Syntax of Instructions to Manipulate D-IS Memory System 

D-IS has four general routines to initialize memory system and to obtain general in-
formation from the communicator: 

• void DIS_Init(int argc, char **argv). Initializes the D-IS memory system. 
argc and argv are parameters taken from the command line.  

• void DIS_GetProcessRank(int *rank). Gets the rank of a process inside the 
current communicator.  

• void DIS_Finalize(). Finalizes the D-IS memory system and stops the execu-
tion of all MPI routines.  

The D-IS memory system also has the following instructions 

• int DIS_Request(int node, int id, int pos). It requests the element pos 
of the I-Structure id to process node. Remote requests are stored in a list whose 
index is attached to a MPI message as a continuation vector. This routine returns 
the position of the request in the list. 

• void DIS_RecvRequest(int node). This instruction is divided into three steps. 
First, an MPI_Recv instruction is executed to receive a request. Secondly, local 
D-IS is consulted to obtain information about the I-Structure element requested. 
If the I-Structure element is in the “empty” or “deferred” state, then the request is 
added to the end of the deferred-reads queue and no further action is taken. Fi-
nally, as soon the I-Structure element becomes available, the value is sent back to 
the requester by using another MPI_Send call.  
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• double DIS_RecvDatum(int index). An MPI_Recv instruction is executed to 
receive a message from node. Index specifies the position from the list of remote 
requests where the continuation vector is stored. This routine returns the value of 
the I-Structure element requested.  

• Void DIS_Write(int id, int pos, double value). This instruction stores a 
value in the I-Structure id at position pos. If that element is in the “deferred” 
state the value stored is copied to all continuation vectors and state is changed to 
“full”; if element is in “empty” state the value is stored in that position and its 
state is changed to “full”. If element is “full” state then the store operation cannot 
be completed and it causes a fatal error.  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

int main(int argc, char **argv ){ 
-CODE- 
if (rank==0){ 
  for (j=1; j<PROCS; j++) 
   for (i=0; i<n; i++) 
    index[i]=DIS_Request(j, ID, i); 
   for (j=1; j<PROCS; j++) 
    for (i=0; i<n; i++) 
     data[i]=DIS_RecvDatum(index[i]); 
 } 
 else{ 
  for (i=0; i<n; i++) 
    DIS_Write(ID, i, value[i]); 
  for (i=0; i<n; i++) 
    DIS_RecvRequest(0); 
 } 
-CODE- 
} 

Fig. 3. Original user code 

3.2 Code Transformation Description Following an Example Code 

An example of code transformation by exploiting constant information is presented 
next. Fig. 3 shows the original user code to be optimized. In this code, process 0 sends 
request for n elements to the rest of the processes in the communicator.  

As constant input information, we provide the following parameters: PROCS=2, 
n=3, ID=3. For rank=1 we define I-Structure elements such as: ID=3, element=0, 
value=12.7 and ID=3, element=2, value=38.5 

3.2.1 Main-Body Routine Code Duplication 
In this step, the original main-body routine code is copied as many times as there are 
specified processes. The main-body routine code is substituted for a switch-case in-
struction that selects the appropriate code for each process.  The code for a particular 
process is specified by the function main_process_X, where X is the rank number and 
it is an exact copy of the original main-body code. In Fig. 4, we see how this code 
transformation is done in the example code: a new main-body code is inserted (lines 
1-12) and it contains a switch instruction where the variable rank has two possible op-
tions because it is intended to run with two processes. Also, two new functions have 
been inserted in the code, main_process_0 (lines 14-32) and main_process_1 (lines 
34-52), these functions specify the code for each process. 
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1  
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);        
DIS_GetProcessRank(&rank); 
switch(rank) { 
     case 0: main_process_0();  
             break; 
     case 1: main_process_1();  
             break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
if (rank==0){ 
 for (j=1; j<PROCS; j++) 
  for (i=0; i<n; i++) 
   index[i]=DIS_Request(j, ID, i); 
 for (j=1; j<PROCS; j++) 
  for (i=0; i<n; i++) 
   data[i]=DIS_RecvDatum(index[i]); 
} 
else{ 
 for (i=0; i<n; i++) 
  DIS_Write(ID, i, value[i]); 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

for (i=0; i<n; i++) 
 DIS_RecvRequest(0); 
} 
-CODE- 
return 1 ; 
} 
 
int main_process_1(){ 
-CODE- 
if (rank==0){ 
 for (j=1; j<PROCS; j++) 
  for (i=0; i<n; i++) 
   index[i]=DIS_Request(j, ID, i); 
 for (j=1; j<PROCS; j++) 
  for (i=0; i<n; i++) 
   data[i]=DIS_RecvDatum(index[i]); 
} 
else{ 
 for (i=0; i<n; i++) 
  DIS_Write(ID, i, value[i]); 
 for (i=0; i<n; i++) 
  DIS_RecvRequest(0); 
} 
-CODE- 
Return 1 ; 
} 

Fig. 4. Main-body routine code duplication 
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26 

Int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);        
DIS_GetProcessRank(&rank); 
switch(rank) { 
     case 0: main_process_0(); 
             break; 
     case 1: main_process_1();  
             break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
if (0==0){ 
for (j=1; j<2; j++) 
 for (i=0; i<3; i++) 
  index[i]=DIS_Request(j, 3, i); 
 for (j=1; j<2; j++) 
  for (i=0; i<3; i++) 
  data[i]=DIS_RecvDatum(index[i]); 
 } 
 else{ 
 for (i=0; i<3; i++) 
  DIS_Write(3, i, value[i]); 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
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52 

for (i=0; i<3; i++) 
 DIS_RecvRequest(0); 
} 
-CODE- 
return 1; 
} 
 
int main_process_1(){ 
-CODE- 
if (1==0){ 
 for (j=1; j<2; j++) 
  for (i=0; i<3; i++) 
  index[i]=DIS_Request(j, 3, i); 
 for (j=1; j<2; j++) 
  for (i=0; i<3; i++) 
  data[i]=DIS_RecvDatum(index[i]); 
} 
else{ 
 for (i=0; i<3; i++) 
  DIS_Write(3, i, value[i]); 
 for (i=0; i<3; i++) 
  DIS_RecvRequest(0); 
 } 
-CODE- 
return 1; 
} 

Fig. 5. Constant propagation to identify static loops 

3.2.2 Constant Propagation 
In this step, we propagate constant information throughout the code to detect any pos-
sible static loop. In the example (see Fig. 5 for details), we propagate for rank=0 the 
constants PROCS=2, n=3, ID=3 and for rank=1 we propagate: PROCS=2, n=3, ID=3.  

3.2.3 Dead-Code Elimination 
Instructions that will never be processed by a particular process are eliminated in this 
step (see Fig. 6 for resulting code); for instance, conditional expressions depending on 
the rank value. In the example, from Fig. 5, we see that lines 24-29 in function 
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main_process_0 will never be executed by process 0; the same happens in function 
main_process_1 where lines 36-43 will never be processed by process 1.  

3.2.4 Unrolling Loops 
All loops involving memory accesses are unrolled to detect possible static instructions 
inside loops. In the example code (Fig. 6), there are six loops that can be unrolled 
(lines 14, 15, 17, 18, 26, and 28).  Fig. 7 shows the code after the loops have been un-
rolled. 

1  
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);        
DIS_GetProcessRank(&rank); 
switch(rank) { 
  case 0: main_process_0(); break; 
  case 1: main_process_1(); break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
for (j=1; j<2; j++) 
 for (i=0; i<3; i++) 
 index[i]=DIS_Request(j, 3, i); 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

for (j=1; j<2; j++) 
 for (i=0; i<3; i++) 
  data[i]=DIS_RecvDatum(index[i]); 
-CODE- 
return 1; 
} 
 
int main_process_1(){ 
-CODE- 
for (i=0; i<3; i++) 
 DIS_Write(3, i, value[i]); 
for (i=0; i<3; i++) 
 DIS_RecvRequest(0); 
-CODE- 
return 1; 
} 

Fig. 6. Code after dead-code elimination 

1  
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);        
DIS_GetProcessRank(&rank); 
switch(rank) { 
     case 0: main_process_0();   
             break; 
     case 1: main_process_1();  
             break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
index[0]=DIS_Request(1, 3, 0); 
index[1]=DIS_Request(1, 3, 1); 
index[2]=DIS_Request(1, 3, 2); 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

data[0]=DIS_RecvDatum(index[0]); 
data[1]=DIS_RecvDatum(index[1]); 
data[2]=DIS_RecvDatum(index[2]); 
-CODE- 
return 1; 
} 
 
int main_process_1(){ 
-CODE- 
DIS_Write(3, 0, value[0]); 
DIS_Write(3, 1, value[1]); 
DIS_Write(3, 2, value[2]); 
DIS_RecvRequest(0); 
DIS_RecvRequest(0); 
DIS_RecvRequest(0); 
-CODE- 
return 1; 
} 

Fig. 7. Unroll loops inside each local_main functions 

3.2.5 Final Constant Propagation 
We propagate constants throughout the code to reach variables inside the loops that 
may not be processed during first propagation. In Fig. 8, we show the code after 
propagation; lines 28 and 30 have been modified specifying the values to be stored in 
the I-Structure 3 positions 0 and 2. 

3.2.6 Constant Requests Evaluation for Remote I-Structure Elements 
This step detects static memory accesses and eliminates them. Each constant request 
is erased from the code and a DIS_RemoteRequest() function is inserted instead in the 
main_process_X() function of the remote process code. 
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1  
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);     
DIS_GetProcessRank(&rank); 
switch(rank) { 
     case 0: main_process_0();   
             break; 
     case 1: main_process_1();  
             break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
index[0]=DIS_Request(1, 3, 0); 
index[1]=DIS_Request(1, 3, 1); 
index[2]=DIS_Request(1, 3, 2); 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Data[0]=DIS_RecvDatum(index[0]); 
data[1]=DIS_RecvDatum(index[1]); 
data[2]=DIS_RecvDatum(index[2]); 
-CODE- 
return 1; 
} 
 
int main_process_1(){ 
-CODE- 
DIS_Write(3, 0, 12.7); 
DIS_Write(3, 1, value[1]); 
DIS_Write(3, 2, 38.5); 
DIS_RecvRequest(0); 
DIS_RecvRequest(0); 
DIS_RecvRequest(0); 
-CODE- 
return 1; 
} 

Fig. 8. Code after constant propagation 

1  
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

int main(int argc, char **argv ){ 
  DIS_Init(&argc,&argv);        
  DIS_GetProcessRank(&rank); 
  switch(rank) { 
    case 0: main_process_0(); 
            break; 
    case 1: main_process_1();  
            break; 
  }; 
  DIS_Finalize(); 
  return 1; 
} 
 
 
int main_process_0(){ 
  -CODE- 
  data[0]=DIS_RecvDatum(index[0]); 
  data[1]=DIS_RecvDatum(index[1]); 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

  data[2]=DIS_RecvDatum(index[2]); 
  -CODE- 
  return 1; 
} 
 
int main_process_1(){ 
  -CODE- 
  base=0; 
  DIS_Write(3, 0, 12.7); 
  DIS_Write(3, 1, value[1]); 
  DIS_Write(3, 2, 38.5); 
  DIS_RemoteRequest(0,3,0,base+0); 
  DIS_RemoteRequest(0,3,1,base+1); 
  DIS_RemoteRequest(0,3,2,base+2); 
  base=3; 
  -CODE- 
  return 1; 
} 

Fig. 9. Static messages evaluation by inserting DIS_RemoteRequest()functions in the data-
owner (process that stores data) text code 

The introduction of the DIS_RemoteRequest() functions insert in local I-Structure 
elements a remote deferred read. From Fig. 8, lines 16-18 are constant requests and 
can be transformed into DIS_RemoteRequest() functions as can be seen in Fig. 9 in 
lines 30-32. Base is a variable that adjusts index when loops involving memory re-
quests cannot be unrolled. 

3.2.7 Constant Remote Request Completion 
In this step, each main_process_X()function is analyzed to check if any of the 
DIS_RemoteRequest()functions refers to an I-Structure element already defined by a 
DIS_Write() function.  If so, there is no need to wait until execution time to complete 
this evaluation, it can be evaluated during this optimization step. Then, the corre-
sponding DIS_RecvDatum()function can be deleted and substituted by the constant 
value already defined. From Fig. 9, lines 30 and 32 refer to an I-Structure element al-
ready defined in lines 27 and 29 respectively. 

Therefore, lines 30 and 32 (Fig. 9) can be evaluated by copying values 12.7 and 
38.5 into the main_process_0() code as is shown in Fig. 10, lines 17 and 19.  
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In this section, we have shown above how to partially evaluate remote memory re-
quests by exploiting the I-Structures’ features and constant propagation prior to the 
execution of the parallel program. In this particular data independent example, three 
of the messages needed to perform remote memory requests can be fully evaluated 
while 2/3 of the messages that answer remote requests can be also fully evaluated. 
Hence, from six messages that were required to be evaluated at execution time, five of 
them were evaluated during the optimization technique. 

1  
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

int main(int argc, char **argv ){ 
  DIS_Init(&argc,&argv); 
  DIS_GetProcessRank(&rank); 
  switch(rank) { 
    case 0: main_process_0();   
            break; 
    case 1: main_process_1();  
            break; 
  }; 
  DIS_Finalize(); 
  return 1; 
} 
 
 
int main_process_0(){ 
  -CODE- 
  data[0]=12.7; 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

  data[1]=DIS_RecvDatum(index[1]); 
  data[2]=38.5; 
  -CODE- 
  return 1; 
} 
 
int main_process_1(){ 
  base=0; 
  -CODE- 
  DIS_Write(3, 0, 12.7); 
  DIS_Write(3, 1, value[1]); 
  DIS_Write(3, 2, 38.5); 
  DIS_RemoteRequest(0,3,1,base+1); 
  base=3; 
  -CODE- 
  return 1; 
} 

Fig. 10. Constant information in remote node is transferred to the requester 

4 Experimental Results 

This optimization technique has been tested with several algorithms such as matrix 
multiplication, conjugate gradient, and fast Fourier transform [7, 8] running in a SGI 
Origin 2000 with 10 MIPS R10000 processors and a PC Cluster with 8 Pentium III 
processors. In this section, we show experimental results for a 4 Dual-Pentium III PC 
Cluster in a 10/100 Fast Ethernet point-to-point interconnection and 512 MB of mem-
ory in each node. Programs presented in the section use no collective communication, 
cache mechanism, message coalescing, or data locality exploitation. These restrictions 
are set just to observe how much performance can be obtained just by the partial 
evaluation technique alone. 

We present experimental results using the 2D Haar wavelet transform (2D-HWT) 
applied to a 1024x1024 image. The Haar wavelet transform is the first known wave-
let, proposed in 1909 by Alfred Haar [17]. The Haar wavelet is also the simplest pos-
sible wavelet. As opposed to the functions sine and cosine used for Fourier trans-
forms, a wavelet not only has locality in the frequency domain but also in the time or 
spatial domain. The algorithm produces as output a file containing the average of 
original image together with the detail information of the same image.  

We chose 2D-HWT because it is a data independent algorithm. This feature makes 
it well suitable to show the advantages of our optimization technique. With this 
benchmark program, we intend to demonstrate how parallel programs can benefit 
when part of the input information is constant. In benchmark program, we assume that 
different percentages of the input image are known. This assumption is reasonable in 
digital image processing where images may contain a constant background or fixed 
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objects. In experiments, we run the program that implements 2D-HWT and use D-IS 
memory system.  

We show results for different percentages of the image, network latencies, and 
number of processing elements (PEs). We define the following notation: 

DIS - Refers to the original program without any optimization.  
DIS(p) - Refers to the optimized program running when p percentage of the image 

is known. When zero percentage of the image is known, technique can still be per-
formed because the sending of requests can be evaluated if image size is provided. 
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Fig. 11. Number of messages sent varying the
number of processing elements and the per-
centage of the image that is known 

Fig. 12. Reduction in the message rate 
when part of the image (0%, 5%, and 20%) 
is known 

4.1 Number of Messages Analysis 

Fig. 11 shows how the number of messages sent by optimized and non-optimized 
programs varies with respect to the number of PEs. Comparing DIS and DIS(0) from 
this figure, we can see that optimization technique can eliminate half of the messages 
just by knowing the image dimension and the number of processing elements avail-
able. Under these circumstances memory requests can be sent even without knowing 
the value of any pixels of the image.  

These instructions represent half of the messages to send; the other half is required 
to send the value of elements when they become available.  

We also see that the number of messages is reduced when the number of processing 
elements increases; this is an effect of parallelization and data distribution. Compar-
ing DIS(0), DIS(5) and DIS(20); we also see the impact of the technique when part of 
the image is known. In this case, not only the requests can be performed which is the 
case between DIS and DIS(0), but also some requests can be answered, thereby elimi-
nating more messages, as seen in Fig. 11. 

These results are confirmed in Fig. 12, which shows the reduction in the rate of 
message. This measurement is the ratio between the number of messages sent by the 
DIS program over the number of messages sent by the DIS(k) programs. As seen in 
the figure, this ratio is at least two and increases when part of the image is known. 
This happens for 2, 4, and 8 PEs.  
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4.2 Execution Time Reduction Analysis 

Fig. 13 shows the execution time reduction rate obtained with DIS program varying 
the percentage of constant information, number of PEs and the interconnection net-
work latency. Execution time reduction rate is the ratio between DIS execution time 
over DIS(k) execution time. From this figure, we see the impact of the technique with 
different interconnection network latencies. 
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Fig. 13. Execution time reduction rate vary-
ing the number of PEs, the percentage of 
constant information and the interconnection 
network speed. We analyze (a) twice faster 
(b) original and (c) twice slower network 
speeds 

Fig. 14. Speedup of DIS, DIS(0), DIS(5), 
DIS(20) programs with different numbers of 
PEs. We present data for (a) twice faster (b) 
original and (c) twice slower interconnection 
network 
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In Fig. 13a, the interconnection network is twice faster than network in Fig. 13b and 
four times faster than in Fig. 13c; while the network in Fig. 13b is twice faster than 
the network in Fig. 13c. Hence, from this figure we see that the reduction rate is 
higher when the interconnection network is slower. This means that technique makes 
single assignment memory system more robust and latency tolerant.  

We also see that there is almost no optimization possible when there is just one PE 
because technique gets its real advantage from remote memory operations instead of 
local memory operations. Also, when we increase the percentage of constant input in-
formation from 0, 5, and 20, there is a small increment in the reduction ratio because a 
second message is eliminated; however, the processing of that message is not so time-
consuming when compared with the time spent by sending and receiving requests. 
Moreover, optimization is reduced when the number of PEs is increased.  This is due 
to the data distribution between PEs; in other words, when more PEs are added, then 
more messages are required to exchange information. 

This effect does not mean that the optimized program runs slower; this only means 
that the original program execution time and the execution time of its optimized ver-
sion are becoming similar. 

4.3 Speedup 

Fig. 14 shows the speedup obtained by benchmark programs when increasing the 
number of PEs and varying the interconnection network speed by a factor of two. We 
compare the time spent by parallel programs running in several PEs with respect to 
the same parallel implementation running in a single PE.  

Fig. 14a, 14b, and 14c show that DIS programs have a speedup below one which 
means that programs with more than one PE run slower than their sequential counter-
part. This is due to the exchange of messages, which are time consuming; however, 
with the introduction of more PEs, the program begins speeding up. When the inter-
connection network is fast enough, the speedup becomes higher than one (see Fig. 14a 
DIS with 8 PEs).  However, when the technique is applied to DIS program even with-
out any image values, which is the case of DIS(0), we note a positive speedup. This 
tendency is also valid for DIS(5) and DIS(20) execution times.  

In these cases, the overhead introduced by the management of I-Structures and the 
communication times can be masked by the technique, producing a faster optimized 
code. DIS(0), DIS(5), and DIS(20) display a similar speedup because the execution 
time is similar in these cases. 

5 Related Work 

In this section we review related work in the area of parallel program optimization. 
We analyze optimizations performed to the communication library (MPI) in software 
and hardware also we review optimizations performed at compiled time which ex-
ploits static information about network or communication patterns.  
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5.1 Optimization of Inter- rocess Communication 

Optimizations of the MPI barrier operation are discussed in [19]. Moh et al propose a 
fast tree-based barrier synchronization scheme for 2-D meshes producing a reduction 
in the number of messages by combining the synchronization messages. 

In [4], a design and implementation of the MPI collective communication instruc-
tions optimized for clusters of workstations is presented. The system consists of two 
main components: the MPI-CCL layer and a User-Level Reliable Transport Protocol 
(URTP). The MPI-CCL layer includes the collective communication functionality of 
MPI and the URTP works as an interface with the LAN Data-Link Layer. Their sys-
tem is integrated with the operative system through a kernel extension mechanism. 
These operations reduce significantly the number of messages during the execution of 
a MPI program.  However, the correct utilization of these instructions depends on the 
ability of programmer. 

In [10], a prototype of the D-OSC, a SISAL compiler for distributed memory ma-
chines is presented. D-OSC is a further research of the Optimizing SISAL Compiler 
(OSC) [16]. D-OSC generates C code with MPI calls. In D-OSC, messages are elimi-
nated using rectangular arrays, multiple-alignment, and block messages.  

In [13], a library of collective communication operations, called MAGPIE, is pre-
sented. MAGPIE is optimized for wide area systems and its algorithms are designed 
to send the minimal amount of data over the slow wide area links, and to only incur 
singlewide area latency. MAGPIE implements the complete set of collective opera-
tions according to the MPI standard. Reduction operations with short data vectors are 
frequently used in parallel applications.  The paper also discusses optimizations such 
as message vectorization, message coalescing, and redundancy elimination imple-
mented in MAGPIE. 

5.2 Optimizations at Compile-Time 

Single assignment is a fundamental property of variables in functional languages. 
When a variable is only assigned to a value once, then an instance of that variable is 
thereafter semantically equivalent to the value. The single assignment property is used 
in compilers to implement a variety of optimizations [5]. One of the most attractive 
features of single-assignment in parallel systems is that cache coherence is already 
embedded in it [15].  

The PARADIGM compiler [3], provides an automated mean to parallelize sequen-
tial programs for their efficient execution on distributed-memory multi-computers. 
PARADIGM performs a number of optimizations: automatic data partitioning and 
distribution, synthesis of high-level communication, and communication optimiza-
tion. These are provided through a generic library interface (MPI is included). Regu-
lar computations are optimized by message coalescing, message vectorization, coarse 
grain pipelining, and message aggregation. It also supports functional, data parallel-
ism, and multithreaded execution. 

In [1], a compiler algorithm that automatically finds computation- and data-
decompositions is presented. This algorithm optimizes both parallelism and data lo-
cality. Also, a mathematical framework to systematically derive decompositions is in-
troduced. An optimization algorithm focuses on programs with nesting of parallel and 

p
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sequential loops. The algorithm attempts to uncover a static decomposition that ex-
ploits the maximum degree of parallelism available in the program to minimize com-
munication, such that there is no reorganization or pipeline communication. It can ex-
ploit parallelism in both fully parallelizable loops as well as loops that require explicit 
synchronization. If communication is needed, the algorithm will attempt to introduce 
the least expensive forms of communication into those parts of the program that are 
least frequently executed. 

Another optimization technique performed at compile-time and applied to mes-
sage-passing parallel programs is Compiled Communication (CC) [21]. In CC, the 
compiler determines the communication requirements in a program and manages net-
work resources, such as multicast groups and buffer memory, statically using the 
knowledge of both the underlying network architecture and the application communi-
cation requirement. In this technique, the compiler analyzes the program and parti-
tions it into phases. Each phase has a fixed communication pattern and the compiler 
inserts code to reconfigure the network at the end of each phase to manage network 
resources directly. CC can eliminate runtime communication overhead produced by 
group management. CC can also use prolonged connections for communications and 
amortize the startup overhead over a number of messages. However, CC cannot be 
applied to communications where information is not available at compile time. In 
other words, the programming style influences the effectiveness of the CC technique. 
Recently, CC has been proposed to improve the performance of MPI routines for 
clusters of workstations, and an MPI prototype called CC-MPI [12] has been de-
signed. The CC-MPI supports compiled communication on Ethernet switched clus-
ters. It allows the user to manage network resources such as multicast groups directly 
and to optimize communications based on the availability of the communication in-
formation. The CC-MPI optimizes one-to-all, one-to-many, all-to-all, and many-to-
many collective communication routines using the CC technique. 

6 Conclusions 

In this paper, we have provided detailed information about how to perform code ma-
nipulations in order to optimize parallel programs by exploiting static information. 
This technique eliminates messages if the input data of MPI_Send() and MPI_Recv() 
routines are known. We show that code transformations can be considered as efficient 
optimization tool and they can be done by a partial evaluator using D-IS memory sys-
tem. We have shown that partial evaluation can be extended to a wider class of pro-
gram paradigms, and efficiently applied to distributed-applications, reducing the 
number of the most time-consuming operations in addition to the known optimiza-
tions of sequential programs. In some applications with a partially given input, the 
number of remote memory requests can be decreased dramatically by evaluating 
ready-to-execute MPI_Send() and MPI_Recv() routines. Traffic in the interconnection 
network and the network latency is also reduced and it makes the system more scal-
able especially with slow interconnection media.  

Technique also improves design process avoiding hand-made optimization and ex-
ploiting features of parallel system automatically. Technique may also increase code 
and memory consumption while improving efficiency; however, the same occurs with 
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traditional partial evaluation technique. The regulation of extra code inserted is made 
by limitation of unfolding or depth of recursion, or loop unrolling, etc. automatically 
or with human interaction during partial evaluation step. Moreover, code that handles 
transactions (send/receive routines) could grow with less speed than specialized code 
for each processor. In any case, elimination of the messages is much more time saving 
than time increasing by code growing.  
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Abstract. In this paper we explore how application-users can, in an
interactive way, test properties about the state of GUI applications that
can be classified as local state transition systems with quiescence. These
properties can be added and removed at run-time. It is guaranteed that
they are type-correct. We investigate the consequences of such an ap-
proach for one particular functional GUI library, Object I/O. The goal is
to gain confidence in the quality of interactive applications, and to seek
properties that can be proven correct, perhaps using formal proof tools.

1 Introduction

Programming an effective Graphical User Interface (GUI) is a challenging task
because of the myriad of details that need to be controlled and managed: the set
of possible events, knowledge of the api, general design rules for GUIs, life-cycle
maintenance of GUI objects, and so on.

However, if we ignore this plethora of details, it turns out that the structure of
a typical GUI program is basically a nested while-case loop. The while structure
reflects the obligation of a GUI application to poll for events until termination;
the case structure reflects the need to perform case distinction on the events and
act according to the needs of the application; this structure is nested due to the
use of constructs such as modal dialogues and synchronous message passing.

A second characteristic feature of GUI applications is that they use a struc-
tured state, usually relying on scope rules. This structured state evolves dynam-
ically, as parts of the state are associated with GUI objects. The data itself is
in general not very complicated. We call the state stable when the application
is polling for the next available event, because it can not modify the state in
any way until an event is actually been given to it. In testing theory, this state
of the application is also known as quiescence [17], i.e.: the application can not
proceed without further input.

Although the structure of GUI programs is clear, it is hard to reason about
GUI applications thoroughly and rigidly. This is caused by the following reasons:

1. The actions that are triggered by the case distinctions operate on the same
(parts of the) state structure, thereby interfering with each other. When there
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are many such actions it is hard to keep track of each of their effects. Even
a small application such as Notepad on Windows has at least 100 actions.

2. Reasoning about a particular program run boils down to reasoning about a
particular event trace, an ordered sequence of events. Applications modify
the set of admissible events dynamically by techniques such as enabling/dis-
abling, hiding/showing, opening/closing of GUI objects, in order to provide
the user with proper feedback on allowed actions on his part. This means
that one cannot assume that an event trace is a sequence of random events.

3. The case distinction done by applications is partial: a program does not
respond to all possible events because that would make even the simplest
application unreasonably large. Instead, the underlying system takes stan-
dard actions if the application is not interested or chooses to ignore events.
As a consequence, one can not rely solely on the code as the specification,
but one must also take the behavior of the operating system into account.

When designing the state structure, the programmer usually has some prop-
erties in mind that the values of the state structure should satisfy whenever the
application is in a stable state. A property is invariant for a specific event trace
if it holds during all stable states along this trace. Ideally, we would like to prove
that a property is invariant for every possible event trace because this promotes
such a property to an invariant of the application. Unfortunately, for the reasons
mentioned above, this is infeasible.

In this paper we take a pragmatic approach to the problem of establishing
(hopefully invariant) properties of GUI applications. We want to encourage GUI
programmers to develop as many properties as possible (including false ones!) to
any GUI object of an application under construction or one that has been finished
long ago by perhaps somebody else. This is known as run-time assertion checking
[12, 10]. However, for reasons of flexibility, we want to be able to interactively add
and remove properties. The application, whenever in a stable state, checks all
currently added properties and notifies the user whenever a property is violated.
In this way, the developer can probe the application for properties.

The concrete research questions this feasibility study should give an answer
to are:

– Can we assign properties to any GUI object in the application, and even to
the whole application? Can this be done at compile-time and at run-time?

– Are properties that are added always of the correct type?
– Can we store properties on disk?
– Is there no loss in efficiency when no properties are probed?

Based on the results of this feasibility study, we intend to implement this
system for the Object I/O library [2, 4, 1, 5], a comprehensive GUI library that is
available for the functional programming languages Clean [16] and Haskell [14].

This paper is structured as follows. We first present our technique for local
state transition systems in general in Section 2. In Section 3 we show that Object
I/O is a local state transition system. We then explain the expected issues when
adding property probing to Object I/O in Section 4. We discuss related work in
Section 5 and conclude in Section 6.
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2 Probing Local State Transition Systems

The bare bones structure of the class of GUI applications that we investigate
is that of a local state transition system [3], which is basically the same as that
of a nested while-case as discussed in the introduction. In this section we reveal
this structure (Section 2.1) in order to point out the technical problems that
need to be resolved when adding/removing (Section 2.2) and testing (Section
2.3) properties in a type-safe and dynamic way.

2.1 Local State Transition Systems

The set of types is very similar to those presented in [3], except that here we do
include interactive processes (in order to reason about complete programs). A
program (Program) is a collection of processes (Process), each of which encapsu-
lates a state ps via an existential quantifier (∃ ps:). This state is shared by all
of its elements. It effectively models the global data that is accessible by every
element. To enforce this, the type (Proc ps) is used.

::1 Program :== [Process]

:: Process = ∃ps: Process (Proc ps)

Every process (the record type Proc ps below) has a number of actions that
respond to process related events. These are modelled by the list of functions in
the field pcbfs. Note that the type of an action, ((Proc ps) → (Proc ps)) provides
it with full access to all elements of a program. In particular, the other processes
are also an element of a process (pcontext). Processes are identified by an ID,
which is a simple integer. An event (id ,i)::Event identifies the i-th action of
the process id. This is of course a very simplified form of events.

:: Proc ps = {2 pstate :: ps

, pid :: ID

, pcbfs :: [ (Proc ps) → (Proc ps) ]
, pobjs :: [Object (Proc ps) ]
, pcontext :: [Process ] }

:: ID :== Int

:: Event :== (ID ,Int)

Processes have top-level objects (these correspond with menus, windows, and
so on), stored in pobjs, each of which again encapsulate their piece of local state
ls and operate on the same state of the program pst, which is always (Proc ps):

:: Object pst = ∃ls: Object ls [Comp ls pst ]

Top-level objects have components with access to the shared state (Proc ps)
and the local state of the top-level object (ls). A component (Comp ls pst)

1 All Clean type definitions are introduced by thekeyword ::. Synonym types are
indicated with separatorsymbol :==. Algebraic and record types are indicated with-
separator symbol =.

2 {f0 :: t0, . . . , fn ::tn} denotes a record type with field names fi and typesti.
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is either a concrete object (Obj ls pst), or it replaces the current local state
(NewLS ls pst), or it extends the current local state (AddLS ls pst).

:: Comp ls pst = Obj (Obj ls pst)
| NewLS (NewLS ls pst)
| AddLS (AddLS ls pst)

:: NewLS ls pst = ∃new: {newLS :: new , newDef :: [Comp new pst]}
:: AddLS ls pst = ∃new: {addLS :: new , addDef :: [Comp (new ,ls) pst]}

Analogous to processes, concrete objects are identified via an ID, have actions,
and can contain other objects. An event (id ,i) identifies the i-th action of the
concrete object identified by id.

:: Obj ls pst = { oid :: ID

, ocbfs :: [ (ls ,pst) → (ls ,pst) ]
, oobjs :: [Comp ls pst ] }

With this collection of types we can model scoped state structures. A value
p::Program represents the complete quiescent state of a program. When an ap-
plication successfully polls for an event e = (id ,i), then the next quiescent state
of the program is computed by (eval e).

eval :: Event Program→ Program3

We will not discuss its implementation: it is basically a recursive function
that searches for a process or concrete object that is identified by id and applies
the i-th action to the current program state. Details can be found in [3].

Example. In order to make this discussion more concrete, consider the following
small example of a local state transition system that has a few ‘bugs’:

program :: Program

program

= [Process // the process
{ pstate = [ ] // shared [Int] state of process
, pid = 1 // identification value of process
, pcbfs = [ ] // process has no actions
, pobjs = [Object // top-level object

0 // local Int state of top-level object
[Obj { oid = 2 // identification value of child object

, ocbfs = [ λ(n ,pst=:{pstate=l}) // action 1
→ (n+1,{pst &4 pstate=[n+1:l ]5})

, λ(n ,pst=:{pstate=l}) // action 2
→ (n-1,{pst & pstate=tl l}) ]

, oobjs = [ ] } ] ]
, pcontext = [ ] }]

3 Clean separatesfunction arguments by whitespace, instead of →.
4 {r & f0 = v0,. . . , fn = vn} is a record equal to r, except that fields fi have value vi.
5 Clean lists are always delimited by [ and ].
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The process maintains and shares a list of integers, pstate :: [Int ] . The
concrete object, identified by oid = 2, has two actions: the first adds one element
to the list, and the second shortens the list. The object has a local integer state
which value should reflect the length of the shared integer list. The second action
contains two bugs caused by unrestricted uses of tl in tl l and - in n-1.

2.2 Adding and Removing Properties at Run-Time

A property of some data type st is a boolean function:

:: Prop st :== st→ Bool

In Section 2.1 we have introduced the elements that we want to probe:

– Complete programs, of type [Process ] are probed with (Prop [Process ]).
– Processes, of type (Proc ps), with ps the type of the shared state, are probed

with (Prop (Proc ps)).
– Concrete objects, of type (Obj ls (Proc ps)), with ls the type of the local

shared state of the concrete object. Note that, due to NewLS and AddLS, ls
can be a nested tuple composition of several local states. They are probed
with (Prop (ls ,Proc ps)).

In order to test any of these elements at run-time with an appropriate prop-
erty one needs to provide a property of the correct type. Unfortunately, only the
type of complete programs is immediately accessible; the types of the scoped
state of processes and concrete objects can not be retrieved, even though we,
as program developer, are well aware of their concrete types. The deliberate
existential quantification has rendered it impossible for us to check properties
afterwards using a solution within the static type system.

We need to resort to dynamic type checking if we are to solve this issue. For
several years now, Clean has had dynamic types [15, 18]. There are basically two
ways to use dynamic types for our problem:

1. Do not use existential types to hide the types of the states but use dynamic
types. In that case, checking for type equality is straightforward, using run-
time type unification.

2. Use existential types to hide the types of the states, but do the type equality
match inside the object’s scope where the types are known.

Alternative 1 is alien to the philosophy of working in a strongly typed lan-
guage. Instead, we show that alternative 2 can be used within the framework.

First we wrap properties in a dynamic, and give such a property a name:

:: UserProp = { name :: PropName

, prop :: PropDynamic }
:: PropName :== String // A sensible name
:: PropDynamic :== Dynamic // A (Prop st) function
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We need to make a few modifications to the data types that we have intro-
duced in Section 2.1. We store the properties of each object in an association
list. Its key value is (Just id) with id::ID of processes and concrete objects,
and Nothing for complete programs. The association list is stored globally in the
Program type, which now becomes a record.

:: Program = { procs :: [Process ] // As before
, props :: [Property ] } // The property list

:: Property :== (Maybe ID , [UserProp ] ) // For each element, all its properties

The second change that we need to make is related with the dynamic type sys-
tem. We are going to match the type of a property encapsulated in a PropDynamic

with the state in scope of concrete objects and processes. This is done by a type
dependent function [15]. A type dependent function can match a dynamic type
with a static type, provided the static type belongs to the TC type class. We need
to impose this restriction to the type variables of Proc and Obj. Because Clean
does not support type class restrictions on data type definitions, we do this with
an explicit dictionary (DictTC) which amounts to the same thing:

:: DictTC a = { unpack :: Dynamic→ (Bool ,Prop a) }

:: Proc ps = { ... , pdict :: DictTC (Proc ps) }
:: Obj ls pst = { ... , odict :: DictTC (ls ,pst) }

The unpack member is a function that returns the content of its dynamic
argument if it correctly contains a property of the right type. It is easy to define
a type dependent function that creates a dictionary of the desired type:

dictTC :: DictTC a |6 TC a

dictTC = { unpack = λdx→ case dx of
(x :: Prop a^7) = (True , x)
_ = (False ,⊥) }

We can now proceed by defining the function addProperty that associates a
property with an element:

addProperty :: (Maybe ID) UserProp Program→ (Bool ,Program)

The task of (addProperty mid prop prog) is to extend the prog.props list with
an entry for (mid ,prop) either by extending an existing entry or creating a new
one. The function fails (returns False) if the type of the property does not
match. The key challenge of this function is the check for type equality. Let us
assume that this function, propertyTypeMatches, exists. Then the definition of
addProperty is straightforward:

addProperty :: (Maybe ID) UserProp Program→ (Bool ,Program)
addProperty mid p=:8{prop} program=:{props}

6 In a function type, | introducesall overloading class restrictions.
7 â refers to a in the parent function type, in this case DictTC a.
8 x =: e binds x to e.
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| not (propertyTypeMatches mid prop program)
= (False ,program)

| otherwise = (True,{program & props=new_props})
where

new_props = case span (λ(mid ‘ ,_) = mid�=mid ‘ ) props of
(otherProps , [ ] ) // no properties yet

= otherProps++ [ (mid , [p ] ) ]
(otherProps , [ (_ ,ps):otherProps2 ] ) // extend properties

= otherProps++ [ (mid ,ps++ [p ] ):otherProps2 ]

Note that addProperty maintains the order of registered properties, so prop-
erties are tested in the same order all the time.

The function application (propertyTypeMatches mid p program) must decide
whether the indicated object operates on the type as given by p. If mid==Nothing,
then it must be a program property, and hence the dynamic content should be
matched with type (Prop [Process ]):

propertyTypeMatches :: (Maybe ID) PropDynamic Program→ Bool

propertyTypeMatches Nothing dp _ = case dp of
(_ :: Prop [Process ] ) = True

otherwise = False

If (mid == (Just id)), then it must either correspond with a process or with
a concrete object.

propertyTypeMatches (Just id) dp {procs} = any (processMatches id dp) procs

A process matches if its pid matches id and the dynamic property dp matches
the dictionary pdict. A process also matches if any of its components matches:

processMatches :: ID PropDynamic Process→ Bool

processMatches id dp (Process proc) = procMatches id dp proc

where
procMatches :: ID PropDynamic (Proc ps) → Bool | TC ps

procMatches id dp { pid ,pobjs ,pdict }
= id==pid && fst (pdict.unpack dp) || any (objectMatches id dp) pobjs

The search for the proper concrete object is handled recursively. The inter-
esting case is the match on a concrete object, which proceeds analogously to
matching a process: either the concrete object matches or any of its children.

objectMatches :: ID PropDynamic (Object (Proc ps)) → Bool | TC ps

objectMatches id dp (Object _ cs) = any (compMatches id dp) cs

where
compMatches :: ID PropDynamic (Comp ls (Proc ps)) → Bool | TC ls

compMatches id dp (Obj {oid ,odict ,oobjs})
= id==oid && fst (odict.unpack dp) || any (compMatches id dp) oobjs

compMatches id dp (NewLS {newDef}) = any (compMatches id dp) newDef

compMatches id dp (AddLS {addDef}) = any (compMatches id dp) addDef

Finally, it is convenient to have a version of addProperty that aborts in case
the property type does not match the indicated object’s state:
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add :: (Maybe ID) UserProp Program→ Program add mid prop program

�9 (ok ,program) = addProperty mid prop program

| ok = program

| otherwise = abort ("Could not add "+++10prop.name)

Because properties are stored globally in Program, it is trivial to define the
function that removes properties by name:

delProperty :: PropName Program→ Program

delProperty name program=:{props}
= {program & props=[(mid , [p \\ p←ps | p.name�=name ] ) \\ (mid ,ps)←props]}

Example. We continue our running example given at the end of Section 2.1 by
extending it with properties. The only change of definition of program is the ex-
tension with two record fields pdict=dictTC and odict=dictTC at the appropriate
places, as well as an empty properties list (props=[ ] ).

We introduce one property for the program and process, and two for the
concrete object. They are:

singleProp // Program property
= { name="singleProcess"

, prop=dynamic11 (λprocs→ length procs==1)::Prop [Process ] }
sortedProp // Process property
= { name="sortedProp"

, prop=dynamic (λ{pstate=l} → l==reverse $ sort l)::Prop (Proc [Int ] ) }
lengthProp // Object property
= { name="lengthProp"

, prop=dynamic (λ(n,{pstate=l}) → n==length l)::∀a:Prop (Int ,Proc [a])}
definedProp // Object property
= { name="definedProp"

, prop=dynamic (λ(_,{pstate=l}) → 0≤length l)::∀a b:Prop (a ,Proc [b ] ) }

singleProp states that there is one single process at every stable state; sorted-
Prop says that the integer list of the process is in reverse order; lengthProp defines
that the integer value of the concrete object correctly keeps track of the length
of the list of its parent object; definedProp defines that the list spine does not
contain ⊥. Note that the polymorphism in the types of the latter two functions
makes them suitable for probing other objects.

2.3 Testing Properties at Quiescence

In the previous section we have explained how properties of programs, processes,
and concrete objects can be added and removed at run-time. In this section we
show how these properties can be tested when the application is in a stable state,

9 This is Clean’s ‘do-notation’ for explicit environment passing.
10 +++ is the Clean string concatenation operator.
11 dynamic e :: t turns expression e of type t into a value of type Dynamic.
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is quiescent. The function reportProperties evaluates all current properties of
its program argument and collects the results in a report:

reportProperties :: Program→ PropertiesReport

The report assigns, for each step in a run, a verdict for each tested property.
A verdict is a simple boolean, which is true iff the property holds.

:: PropertiesReport = { run :: Int

, reports :: [PropertyReport ] }
:: PropertyReport :== (Maybe ID , [ (UserProp ,Verdict) ] )
:: Verdict :== Bool

To keep track of the run, the program type is extended with a run-count that
is incremented by eval:

:: Program = { ... , run :: Int }

The purpose of (reportProperties program) is to test every property in the
props field of program. Recall that properties are boolean functions on the par-
ticular state of the object with which they are associated. This means that
reportProperties must construct the appropriate state of each object at which
the property function can be applied. The function can then compute the verdict
simply by application of the property to the constructed state.

The top-level of this function is easily defined:

reportProperties :: Program→ PropertiesReport

reportProperties program=:{run ,props}
= foldl (programProperties program) {run=run ,reports=[]} props

Note that this implies that if no properties are added to a program, the
only computational overhead is generated by incrementing the run count by the
modified eval function.

The function application (programProperties program pr prop) needs to test a
program property in case prop = (Nothing ,props). We know that props contains
(Prop [Process ]) property functions because addProperty is type-safe.

programProperties :: Program PropertiesReport Property→ PropertiesReport

programProperties program=:{procs} pr=:{reports} (Nothing ,props)
= {pr & reports=reports++ [ (Nothing , [ (p ,programProperty p.prop procs)

\\ p← props

]
)]}

where programProperty :: PropDynamic→ Prop Program

programProperty (f :: Prop [Process ] ) = f

In case prop = (Just id ,props) then the correct state context needs to be
built for a process or a concrete object. First consider testing a process prop-
erty. If a process is found with a pid::ID that matches id then we know that the
list of properties props contains functions of type (Prop (Proc ps)), with ps the
type of the current value of its state. We can safely unpack every such property
using the dictionary of the process (pdict) and apply it to the process. Note that
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we need to filter itself from the list of all processes in the pcontext field before
doing so.

programProperties program=:{procs} pr (Just id ,props)
= foldl processProperties pr procs

where
processProperties :: PropertiesReport Process→ PropertiesReport

processProperties pr (Process proc) = procProperties pr proc

where
procProperties :: PropertiesReport (Proc ps) → PropertiesReport

procProperties pr=:{reports=rs} proc=:{pid ,pobjs ,pdict}
| id==pid

= {pr & reports=rs++ [ (Just id , [ (p ,snd (pdict.unpack p.prop) pst)
\\ p← props

] ) ]}
| otherwise

= foldl (objectProperties pst) pr pobjs

where
pst = {proc & pcontext=[p \\ p=:(Process {pid}) ← procs | pid�=id]}

objectProperties ... // see definition below

Testing concrete object properties proceeds in an analogous way, except that
now a local state structure needs to be built to which the properties can be
applied. This is a recursive definition that follows the nested structure of the
objects and their state scopes, which makes it a bit verbose.

objectProperties :: (Proc ps) PropertiesReport (Object (Proc ps))
→ PropertiesReport

objectProperties pst pr (Object ls cs)
= foldl (compProperties ls pst) pr cs

where
compProperties :: ls (Proc ps) PropertiesReport (Comp ls (Proc ps))

→ PropertiesReport

compProperties ls pst pr=:{reports=rs} (Obj {oid ,odict ,oobjs})
| id==oid

= {pr & reports=rs++ [ (Just id , [ (p ,snd (odict.unpack p.prop) (ls ,pst))
\\ p← props

] ) ]}
| otherwise

= foldl (compProperties ls pst) pr oobjs

compProperties _ pst pr (NewLS {newLS ,newDef})
= foldl (compProperties newLS pst) pr newDef

compProperties ls pst pr (AddLS {addLS ,addDef})
= foldl (compProperties (addLS ,ls) pst) pr addDef

Given the reportProperties function, it is straightforward to define extended
eval functions that produce property report(s) and next program(s):

step :: Event Program→ (PropertiesReport ,Program)
step event program = (reportProperties program ,eval event program)
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steps :: [Event ] Program→ ( [PropertiesReport ] ,Program)
steps es program = seqList (map step es) program

Finally, for decent output, we define an instance of the toString function for
a PropertiesReport that displays the number of tested properties, and names
those that have failed in a particular run. We do not want to print the Program

value, but we are interested in the definedness of its state values. We realize this
by adding appropriate strictness annotations in its type definitions.

Example. We finish our running example by mimicking a probing session of
the faulty program. The program definition is extended with run=0 field. We start
by running the program without any properties, given a particular scenario:

Start12

� (rs0 ,program) = steps scenario0 program

= map toString rs0

The scenario first picks the first action of concrete object with ID value equal
to 2, then takes the second action twice, and ends with the first action:

scenario0 = [(2 ,1) ,(2 ,2) ,(2 ,2) ,(2 ,1)]

This scenario reveals the first ‘bug’ in the program:

Step 0: tested 0 properties. 0 failing properties.

Step 1: tested 0 properties. 0 failing properties.

Step 2: tested 0 properties. 0 failing properties.

tl of []

This means that everything runs properly until just before the second invo-
cation of the second action (step 2), but after doing that action apparently the
tail of an empty list is taken. We want to probe the definedness of the integer
list that can be accessed by concrete object identified by ID 2. For this purpose
we use definedProp (Section 2.2).

Start

� program = add (Just 2) definedProp program

� (rs0 ,program) = steps scenario0 program

= map toString rs0

Applying the same scenario provides evidence that the list was defined ini-
tially and after the first two steps:

Step 0: tested 1 property. 0 failing properties.

Step 1: tested 1 property. 0 failing properties.

Step 2: tested 1 property. 0 failing properties.

tl of []

12 Start is the main function of a Clean program.
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This bug is easily fixed by replacing tl with tl ‘ :

tl ‘ :: [a ] → [a ]
tl ‘ xs = i f (isEmpty xs) xs (tl xs)

Running the program through the same scenario confirms that the defined-
ness property now holds for this trace:

Step 0: tested 1 property. 0 failing properties.

Step 1: tested 1 property. 0 failing properties.

Step 2: tested 1 property. 0 failing properties.

Step 3: tested 1 property. 0 failing properties.

At this stage we no longer wish to probe the definedness of the list, but
instead probe the other properties that have been given in Section 2.2. This is
specified as follows:

Start

� program = add (Just 2) definedProp program

� (rs0 ,program) = steps scenario0 program

� program = delProperty definedProp.name program

� program = add Nothing singleProp program

� program = add (Just 1) sortedProp program

� program = add (Just 2) lengthProp program

� (rs1 ,program) = steps scenario1 program

= map toString (rs0++rs1)

scenario1 = [(2 ,1)]

Running the program through this longer scenario reveals the second ‘bug’:

Step 0: tested 1 property. 0 failing properties.

Step 1: tested 1 property. 0 failing properties.

Step 2: tested 1 property. 0 failing properties.

Step 3: tested 1 property. 0 failing properties.

Step 4: tested 3 properties. 1 failing property.

lengthProp

Although property lengthProp is actually violated immediately after the sec-
ond invocation of the second action, this is not displayed because the property
was not probed at that stage. Instead, violation of the property is detected im-
mediately after it is added (after step 3). This is caused by the local integer that
decreases below 0 and therefore incorrectly reflects the length of the integer list.
We fix this bug by replacing n-1 with n.-.1, defined as:

(.-.)13infixl 6 :: !14Int !Int ->Int

(.-.) m n = max 0 (m-n)

Running the scenario again renders the properties invariant with respect to
this event trace.

13 (f) fix n :: t defines a new operatorf of type t with fixityfix∈
{infix , infixl , infixr}and precedence n.

14 In a typedefinition, !t puts type t in a strict context.
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3 Object I/O Is a Local State Transition Systems

In this section we explain the relation between the local state transition systems
of the previous section with Object I/O. We do this in an informal manner, by
means of an Object I/O program that is equivalent to the one shown in Section
2. A different account has appeared earlier in [3].

As in the local state transition example, the program consists of a single inter-
active process. Instead of manipulating an integer list, this program manipulates
an Id list (second argument of Process):

Start :: *15World -> *World

Start world = startProcesses

[Process MDI [ ] initGUI [ProcessClose closeProcess ] ] world

In Object I/O the state of an interactive process is given by the record type
(:: PSt ps = {ls :: ps , io :: IOSt ps}), with ps the state as discussed in the
previous section. io is a combination of the fields pobjs and pcontext. It is an
abstract data type by which the programmer must access all GUI elements and
the external world. In this example, we have a (PSt [Id ]) process state.

The Id values are used to identify windows that are opened and closed dy-
namically by the two actions open and close. These actions are the callback
functions of two menu items, labelled “Open” and “Close” respectively. Their
parent object is the top-level menu object that corresponds with the Object of the
local state transition system, and indeed, it encapsulates an integer state (first
argument of openMenu). Note that the Object I/O program below has exactly the
same ‘bugs’ as the running example in the previous section.

initGUI :: (PSt [Id ] ) → PSt [Id ]
initGUI pst = snd $ openMenu 0 mDef pst

where
mDef :: Menu (:+: MenuItem MenuItem) Int (PSt [Id ] )
mDef = Menu "&File"

( MenuItem "&Open" [MenuFunction open ]
:+: MenuItem "&Close" [MenuFunction close ]
) [ ]

open :: (Int ,PSt [Id ] ) → (Int ,PSt [Id ] )
open (n ,pst=:{ls=l})

� (wid ,pst) = openId pst

� wDef = Window ("Window "+++toString (n+1)) NilLS [WindowId wid ]
� pst = snd $ openWindow ⊥ wDef pst

= (n+1,{pst & ls=[wid:l]})

close :: (Int ,PSt [Id ] ) → (Int ,PSt [Id ] )
close (n ,pst=:{ls}) = (n-1 ,closeWindow (hd ls) {pst & ls=tl ls})

15 Clean uses the ‘world-as-value’ paradigmfor I/O. An annotated type *t indicates that
t isused in a single threaded way. This is guaranteed by the typesystem.



30 P. Achten

Recall that in the local state transition system there are three kinds of ele-
ments that can be probed:

Programs probed with (Prop [Process ]). Object I/O has a data type similar
to [Process ] (viz. Context) but this is an internal data type and should not
be accessed by the programmer. There are no retrieval operations defined
on this data type, so basically, the programmer can not define program
properties as in the previous section. (Note that this suggests that the api
of Object I/O might be lacking functionality, so it is worthwhile to see what
useful access functions can be added.)

Processes probed with (Prop (Proc ps)). Object I/O processes are probed by
(Prop (PSt ps)); in the example by (Prop (PSt [Id ] )).

Objects probed with (Prop (ls ,Proc ps)). The GUI objects in the program are
mDef, its two MenuItem elements, and the dynamically created windows (wDef).
The menu and its items share an integer local state, so they are probed by
(Prop (Int ,PSt [Id ] )). The window has no significant local state (⊥ :: ∀a:a),
so it is probed by (∀a:Prop (a ,PSt [Id ] )).

4 Issues of Probing Object I/O Programs

In the previous section we have shown in a very informal way how Object I/O re-
lates to local state transition systems. In this section we discuss the major issues
that are likely to occur when Object I/O applications are dynamically probed.
Firstly, dynamically adding/removing properties to an Object I/O program re-
quires identification of the GUI elements at run-time (Section 4.1). Secondly,
assertions should be free of side-effects (Section 4.2). Finally, this work con-
tributes to an old debate about which state paradigm to use: explicit or implicit
state passing (Section 4.3).

4.1 Run-Time Identification of GUI elements

From the account in Section 2.2 we know that it is sufficient to retrieve the Id

value of an element in order to associate a property with it using addProperty.
The example in Section 3 shows that these identification values are known only
at run-time, which is a quite common approach in GUI apis. When probing
GUI elements dynamically, the user needs to identify them. For this purpose
we include a GUI browser for each application with which the user can select a
GUI element, and thereby its identification value. This browser can be defined in
Object I/O using the api inspection functions, and a tree list control to present
the hierarchical structure of the GUI. Fig. 1 gives screenshots of this browser for
the example program at several stable states.

Clean dynamics can be stored on disk, so the user can browse the file system
in search of interesting properties, or create them using the Clean IDE and store
them on disk. This gives the two arguments of the addProperty function, which
should allow us to associate a stored property with a given GUI element.
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Fig. 1. The GUI browser after: [(2,1)], [(2,1),(2,2),(2,2)], and [(2,1),(2,2),(2,2),(2,1)]

4.2 Properties Should Have no Side-Effects

A fundamental problem with assertion checking systems is the side-effect problem
[10]. It states that properties should, for obvious reasons, have no side-effects on
the programs. In local state transition system terminology, this means that a
property should not change the state that it inspects. In Section 2.2 this was
effortlessly realized by defining a property over a state st as the simple function
type st→ Bool. We would like to adopt this simple scheme to Object I/O, but
unfortunately this is not possible. The main reason is that the types in Object
I/O have been designed to allow the programmer to use unique state, i.e. state
that can be destructively updated [6]. This requires the ‘container types’ to be
at least as unique as their content. As a consequence, we are forced to use the
following property type:

:: Prop st :== st→ (Bool ,st)

How can we guarantee that property functions have no side-effect? Such a
function might have an effect on the custom states and on the GUI state. The
latter can easily be eliminated by providing a ‘mirror’ library of Object I/O from
which all functions are removed that have a side-effect. What is left is a proof
obligation that property functions do not change the custom states. Systems
with proof obligations require good support of proof tools such as Sparkle [9] in
order to assist the programmer with these proofs.

4.3 The Influence of the State Paradigm

Object I/O uses an explicit state passing paradigm. One advantage of this para-
digm is that each object carries in its type full information about which state it
manipulates, so we can quickly check if a property that is to be associated with
an object actually matches the type of the state.

However, it is also possible to use an implicit state passing paradigm using
MVars [13]. This has been discussed in [1]. The used GUI monad is a regular
IOSt state monad which uses MVars to hold the logical state. Advantages of this
approach are the simpler types of Object I/O GUI elements, and the ability
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to have more complex state structures without loss of control over access. The
major disadvantage that was raised against its use is its less declarative nature
because programmers need to explicitly take and put values from these variables.

Interestingly, this paper identifies a new disadvantage of implicit state pass-
ing: in contrast with explicit state passing, the type of an object no longer
contains information on the state that is manipulated by the object. This means
that our approach of unifying the type of a dynamic property with the state of
an object no longer works. Instead, one needs to associate properties over MVars
that happen to be manipulated by objects. Identification and matching of MVars
against property types can be done in a similar way as object identification in
Sections 4.1 and 2.2, but is more complicated because all MVars must be retrace-
able for identification purposes, and a property of type (st1 . . . stn → GUI Bool)
must be matched against (MVar st1) . . . (MVar stn).

5 Related Work

Assertion checking has been integrated in the object-oriented languages Eiffel
[12] and JML– Java Modelling Language [10]. The Objective Caml language [11]
has an assert statement. In a recent experiment, assertion checking has been
added to Haskell [7]. We have in common with the Eiffel approach that we want
to use executable properties. With the JML approach we share the reuse of the
host language and libraries in order to encourage programmers to probe their
applications. The assert statement in Objective Caml evaluates boolean expres-
sions. These have no effect in case of true statements, but an exception is thrown
in case of false statements. The latter aspect is different from our approach: false
properties increase ones understanding of an application as much as true prop-
erties, and therefore do not terminate the application.

The main differences are: because of the side-effect problem, JML can’t han-
dle I/O methods, which is clearly a must in our case; we do not annotate source
code for our properties, but rather probe the application at run-time using dy-
namically associated properties; this requires properties to be persistent; we do
not yet intend these properties to be subject to formal verification as in JML;
in contrast with the Haskell approach in which properties are not asserted over
unevaluated expressions, we think that an assertion should evaluate an unevalu-
ated expression if needed. The reason for this is that our assertions are meant to
express properties of a program: a list must be sorted, a length invariant should
hold, and so on. Such properties do not stop at unevaluated expressions, but
refer to the complete value.

Probing application properties dynamically has the same flavor as using a
tracing/debugging tool such as Freja, Hat, and Hood [8] or those used in more
conventional programming languages such as C. With such tools one inspects
the run-time values of an application whereas we focus on relations between
run-time values expressed as properties.

Another area that is related to our work is that of testing [17] because in
both areas it is the application itself that is subject to probing and we can give
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verdicts only for specific event traces, which in practice will not exhaust the
possible event trace search space. At this moment the theory and practice of
testing of GUI applications is starting to grow. Our project is a first step to
investigate what can be done in this area.

6 Conclusions and Future Work

In this paper we have shown how systems that are based on local state transition
systems can be probed at run-time for their stable state based properties. These
properties can be added and removed at any stable state of the application.
There are no limitations to the size of the application. We have shown what
needs to be done additionally for one particular instance of local state transition
systems, the Object I/O library. This provides us with a directly usable means
to probe GUI applications of arbitrary size.

There are many directions of research to take based on this framework.
Among others these are: adding good property management functionality to the
framework; extend it with value-inspection and back-tracing in case a property
is found to be invalid; explore the formal verification potential of our approach.
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Abstract. This paper presents FunctionalForms, a combinator library
for constructing fully functioning forms in a concise and flexible way. A
form is a part of a graphical user interface (GUI) restricted to displaying
a value and allowing the user to modify it. The library is built on top of
the medium-level GUI library wxHaskell. To obtain complete separation
between the structure of a form’s layout and that of the edited values,
we introduce a novel use of compositional functional references.

1 Introduction

In many applications, the graphical user interface (GUI) contains parts which
can be considered forms: they show a set of values, and allow the user to update
them. For example, the omnipresent dialogs labeled Options, Settings and Prop-
erties are forms. Also, an address book can be considered a form. (Note that in
our sense of the word, a form is not only used for input but also for output.)

Despite their simple functionality, programming these forms is often a time-
consuming task. A lot of code is spent on converting values and passing them
around; furthermore, creating even the smallest form requires quite some knowl-
edge about the architecture of the GUI library. For larger forms, the code tends
to get monolithic, badly readable and inflexible.

In this paper we present the combinator library (or embedded domain-specific
language) FunctionalForms, built on top of the GUI library wxHaskell[1] (while
our earlier work[2] shows that the ideas are general enough to build it on top of
another library, Object I/O[3]). It is dedicated for building forms in a concise and
compositional way, and abstracts over low-level implementation details. A form
built with FunctionalForms can be used as an action on initial data; it returns
the modified data in the IO monad.

We take special care to preserve the expressivity of wxHaskell’s layout com-
binators, and to separate the look of a form (what are its constituent forms
and what is their relative layout) from the structure of the edited value. It is
especially this part of FunctionalForms that is the most important contribution
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of our framework: we present a technique which uses compositional functional
references in a novel way to completely separate the two structures.

To indicate the need for a combinator library for forms, we start with a small
form programming example in wxHaskell (Sect. 2). Next, FunctionalForms is de-
veloped in two stages. In Sect. 3, we define the form abstraction and construct a
näıve combinator library for it; in Sect. 4, we transform this library using com-
positional functional references in order to obtain the desired layout freedom. An
elaborate example of programming with FunctionalForms is presented in Sect. 5.
Related work is discussed in Sect. 6 and we conclude in Sect. 7.

2 Form Programming with wxHaskell

A recent GUI library for Haskell is wxHaskell[1], an interface to the extensive
cross-platform C++ library wxWidgets[4]. Since wxHaskell (intentionally) does
not introduce a complete new programming model, programming follows an
object oriented style. We show what this means by giving an example of form
programming in wxHaskell.1 It illustrates the problems of programming forms
at a too low level (see Sect. 2.2) and serves as running example throughout the
paper.

2.1 Example: A Door Information Form

The form we define shows and alters information about a certain door: the name
of the person who works behind it and whether s/he is available. This information
is exchanged with the rest of the system using a pair of type (String,Bool). The
GUI (see Fig. 1) consists of a small dialog window with four controls: a text
entry control to show and alter the name, a drop-down choice control showing
either ‘come on in’ or ‘do not disturb’ and two buttons to close the dialog: OK
to confirm the changes we made and Cancel to reject them.

Figure 2 shows the code producing this dialog. We give a short overview:

– The program starts by creating an empty dialog2 and the four controls to
populate it. For every object, a pointer (pdialog , pentry , . . . ) is returned.
Controls have dynamic attributes which can be manipulated by the user
and/or the program during their lifetime. In particular, the text and selection
attributes (on the entry and choice control, resp.) are set3 to the form’s initial
values (contained in initDoor). We have to convert the Bool value into an
Int first.

– Next, the dialog’s layout is specified. The function widget creates layout
information from a control pointer; the combinators margin, column, row

1 The version of wxHaskell used throughout this paper is 0.8.
2 Although the terms dialog, window and frame have slightly different technical mean-

ings, we will use them interchangeably.
3 The ‘assignment operator’ := looks like a language construct, but is actually just

an infix data constructor defined in the wxHaskell library.
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Fig. 1. Door information form

doorForm parentWindow initDoor =
do let (initName, initAvail) = initDoor

— create dialog and controls
pdialog ← dialog parentWindow []
pentry ← entry pdialog [text := initName]
pchoice ← choice pdialog

[ items := [”come on in”, ”do not disturb”]
, selection := bool2int initAvail
]

pok ← button pdialog [text := ”OK”]
pcancel ← button pdialog [text := ”Cancel”]

— set layout
let mylayout =

margin 6 $ column 10
[ row 5 [widget pentry , widget pchoice]
, alignRight $ row 5 [widget pok , widget pcancel ]
]

set pdialog [layout := mylayout ]

— define event handlers
let getFinalDoor =

do finalName ← get pentry text
finalAvail ← liftM int2bool $ get pchoice selection
return (finalName, finalAvail)

let setclose close =
do set pok [on command :=

do finalDoor ← getFinalDoor ; close $ Just finalDoor ]
set pcancel [on command := close Nothing ]

— run dialog
maybeDoor ← showModal pdialog setclose
return $ case maybeDoor of

Just finalDoor → finalDoor
Nothing → initDoor

where bool2int b = if b then 0 else 1
int2bool i = (i == 0)

Fig. 2. wxHaskell code for door information form
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and alignRight join and transform this information. All layout information
is of type Layout (we will encounter this type again in Sect. 3.1). Note that
the integers 6, 10 and 5 only specify margin widths between controls; actual
coordinates are determined by wxHaskell’s layout system, which also takes
care of resizing controls.

– Both buttons are assigned an event handler : a call-back function (IO action)
invoked when the user presses the button. It can access the dynamic proper-
ties of another control by calling a get or set function with the corresponding
control pointer and property. In the OK button’s event handler, we obtain
the current String and Int values from the pentry and pchoice controls, con-
vert the latter back into a Bool and join them into a tuple again.

– The last few lines run the dialog modally4 and determine the function’s
result: the new values from the controls if the dialog was closed using the
OK button, and the initial value initDoor otherwise.

This doorForm function can be used as an IO action in a wxHaskell program.

2.2 Programming Problems Identified

The first thing one may notice about the above example is that, considering the
minimal functionality that our dialog provides, 39 lines of code is rather sizable.
In the light of defining a form, the only original decisions we express are:

1. We are editing a (String ,Bool) pair; its components are associated with a
text entry control and a choice control, respectively.

2. Regarding the latter, the value True is associated with the first item, labeled
‘come on in’, and False with the second item, labeled ‘do not disturb’.

3. The choice control is placed to the right of the text entry control.

These decisions are encompassed within a lot of procedural code. Moreover, we
see that the first two are encoded twice:

1. (i) During control creation, the text attribute of control pentry is set to the
pair’s first element; the selection attribute of pchoice is set to the second.

(ii) In the button event handler, the values of the same two attributes are
retrieved, and a pair is constructed in the same way.

2. (i) During control creation, the Bool is converted to Int .
(ii) In the button event handler, the Int is converted to Bool .

This reduces the modularity and flexibility of our program: if we want to change,
say, the choice control into a check box control, we need to make consistent
adaptations at two different places.

A third problem, pointed out by Leijen[1], is the possibility to create incorrect
layout specifications: forgetting or duplicating a control causes run-time errors.

All three symptoms are evidence that the programming level is too low for
forms. In the next section, we design a combinator library to abstract over this
level.

4 i.e. the dialog blocks interaction with the rest of the application until it is closed.
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3 A Näıve Combinator Library for Forms

In this section, we develop the first stage of FunctionalForms, which focuses on
abstracting over low-level form programming details. Structured as a typical
combinator library, it revolves around a central data type (FForm) that repre-
sents both the smallest (atomic) and largest parts of the constructed program;
combinators combine and transform these parts.

A value of this type is a form: a part of the GUI that is only able to display
and alter a certain value. A form lives within a surrounding dialog with OK and
Cancel buttons. When this dialog appears, the form has an initial value which
is provided by its environment; subsequently, the user can read and alter this
value; at the end, the user closes the dialog with one of the buttons, and the
form passes the final value to the environment. The type of this value is called
the subject type of the form. It appears as type parameter t in the FForm type:

type FForm t w = Window w → t → IO (Layout , IO t)

The top-level IO action, provided with a pointer to a parent window and an
initial value, creates the controls which make up the form. It returns a Layout
value for this form and another IO action. This action is used when the dialog is
closed with the OK button; it retrieves the form’s current value at that moment.

3.1 Components of the Library

Atomic forms correspond to single wxHaskell controls which contain an editable
value, such as entry . This value is held in some attribute of the control, in
this case text . The definition of the corresponding form entry′ simply joins the
creation, layout, and attribute-reading functions for this control:

entry′ :: FForm String w
entry′ = λw init →

do pentry ← entry w [text := init ]
return (widget pentry , get pentry text)

In Fig. 3, some other atomic forms, their subject types, and the corresponding
wxHaskell attributes are shown. They are defined analogously. We follow the
convention that all exported library functions are underlined.

Forms can be combined into larger forms: taken together, an entry′ and a
checkBox′ edit a composite value (containing a String and a Bool). Näıvely, a
combinator for joining forms therefore joins their subject types as well as their
Layout values. However, this will turn out to be a source of trouble for the library
(see Sect. 3.2). We demonstrate this with the combinator �, which conveniently
suits our doorForm example:

(�) :: FForm t1 w → FForm t2 w → FForm (t1, t2) w
form1 � form2 = λw (init1, init2) →
do (lay1, getfin1) ← form1 w init1

(lay2, getfin2) ← form2 w init2
return ( row 5 [lay1, lay2], liftM2 (, ) getfin1 getfin2 )
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Name Appearance Subject type wxHaskell attribute

entry′ String text

choice′ Int selection

radioBox′ Int selection

checkBox′ Bool checked

spinCtrl′ Int selection

Fig. 3. Some atomic forms and their subject types

As the type signature shows, the composite form’s subject type is a pair of its
components’ subject types. Its initial value (init1, init2) is split up and fed to
the two component forms; likewise, the two final values are joined back into a
pair (we lift the pair constructor into the IO monad). Regarding layout, both
components are put next to each other with a five-pixel gap in between.

Using only � and atomic forms, we can already concisely define a fully func-
tioning form for any combination of simple types expressed in nested pairs. For
example, a form for (String , (Bool ,Bool)) can be defined like:

composite = entry′ � (checkBox′ � checkBox′)

To actually use this form in a wxHaskell program, we would provide it with an
initial value init of type (String , (Bool ,Bool)) and run it:

do . . .
final ← runInDialog parentWindow composite init
. . .

The function runInDialog, when given a parent window, a form and an initial
value of the form’s subject type, yields an IO action producing a modal dialog
which contains the form, an OK button and a Cancel button. This is accom-
plished by:

1. Setting up the dialog with the buttons.
2. Executing the form’s IO action, which creates the controls in the dialog.
3. Augmenting the layout returned by (2) with the layout of the buttons, and

attaching it to the dialog.
4. Using the IO action returned by (2) in the OK button event handler to

retrieve the form’s final value.

The result of runInDialog’s IO action equals the form’s final value if the OK
button is used, and the initial value otherwise. We omit the implementation; it
is very similar to the corresponding fragments in Fig. 2.
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As the last addition to the combinator library, we define the function convert5

and its specialization convertL. They transform a form’s subject type into an
‘isomorphic’ type, given the corresponding bijection.

convert :: (t1 → t2, t2 → t1) → FForm t2 w → FForm t1 w

Often, a concept from the data domain, like week day or eye color, can be
captured with a simple enumerated type. To convert between such a type and
the zero-based Int index used in some atomic forms, we don’t need to write out a
full bijection; it suffices to enumerate the values in a list. The function convertL
then maps the first value to 0, the second to 1, etc.:

convertL :: Eq t ⇒ [t ] → FForm Int w → FForm t w
convertL items = convert (f , finv )

where f a = fromJust $ elemIndex a items
finv i = items!!i

We are now ready to define the form example from Sect. 2.1 in only three lines:

doorForm = entry′ � availForm
availForm = convertL [True,False] $

choice′ [items := [”come on in”, ”do not disturb”]]

3.2 Evaluation of the Combinator Library

An important thing to notice is that the combinator library we defined solves all
the problems mentioned in Sect. 2.2. Along with providing a very concise way
of specifying the relevant decisions, it also rules out the possibility of forgetting
or duplicating controls in the layout specification: an atomic form associates a
control with exactly one layout specification, and the combinators maintain this
invariant.6 However, the library has a disadvantage: � is a bad template for
form combinators, because it introduces a dependency between the subject type
structure and the layout structure of a form. This manifests itself in two ways:

Incompatible types: To increase the layout possibilities for composite forms,
the obvious solution would be to introduce combinators which mimic wx-
Haskell’s layout combinators. When we follow the � template, these combi-
nators also have to construct a subject type, but this often causes trouble:
– For one-argument combinators (which transform a single Layout) such

as margin, it is indeed no problem to ‘lift’ them into the FForm domain:
we just let them alter the form’s layout and leave the subject type alone.

– Lifting a zero-argument combinator such as label , which produces a
Layout by itself, is a little more problematic: the lifted combinator should
produce a form with a certain subject type and final value. In principle,
these can be the unit type and value (). However, every label used in a
composite form will then clutter its subject type with another ().

5 The implementation of convert can be found in Fig. 4.
6 In fact, a similar technique is briefly mentioned in [1] (section Safety).
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– Combinators of the form [Layout ] → Layout , such as row , cause even
more problems: providing the lifted combinator with a list of forms would
force them to have the same subject type. In principle, we could solve
this problem by extending the FForm type to also accommodate lists of
Layouts, and introducing combinators nilF and consF to produce such
forms, but then our doorForm example would turn into

doorForm = row ′ 5 $ entry′ ‘consF ‘ (availForm ‘consF ‘ nilF )

with subject type (String , (Bool , ())). In practice, this is rather awkward.
Dependency between layout and values: Say we want to swap the two con-

trols in the doorForm layout. If we just swap the two operands of �, we
also unintentionally change doorForm’s subject type from (String ,Bool) to
(Bool ,String). One way to hack around this would be to convert the new
form’s subject type back:

doorForm = convert (mirror ,mirror) (availForm � entry′)
where mirror (a, b) = (b, a)

. . . but this is no real solution: with larger forms—say we want to permute
eight controls instead of two—the programmer is heavily burdened by these
kind of ‘plumbing’ bijections. Not only is this much work, but it also has an
impact on the flexibility of the program: if later we decide to alter the layout
structure, we also need to alter the bijection functions again.

The cause of both problems is that we cram too much functionality into the
combinators, thereby creating dependencies between two structures which are,
in essence, largely unrelated. In the next section, we show how to factor the �

combinator into a layout combinator and a subject type combinator.

4 Separating Subject Type and Layout Combinators
Using Compositional Functional References

This section presents the second stage of FunctionalForms. It allows the user to
explicitly manage the subject type of a form, separate from its layout, using
two types of combinators: subject type combinators, like declare2 for a pair,
and layout combinators, like row′ and margin′ (derived from their wxHaskell
counterparts). This enables the definition of forms such as

declare2 $ λ(name, avail) →
row′ 5 [availForm avail , entry′ name]

to specify a door information form with the name at the first position in the
subject type, and at the last position in the layout structure. The connection
between the two structures is formed by special values (name and avail in the
example) which we call compositional functional references.
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4.1 Introducing Compositional Functional References

Reference values are members of an algebraic data type containing two functions:

data Ref cx t = Ref { val :: cx → t
, app :: (t → t) → cx → cx
}

Type variable cx denotes the type of the context, a structure of values, which
contains some sub-structure of type t . The first function retrieves a t value from
a cx structure, while the second updates a cx structure by applying a t → t
update function to the t value at the right spot. An example reference value is
reffst , a reference to the first element of a pair:

reffst :: Ref (t1, t2) t1
reffst = Ref fst appfst

where appfst f (x , y) = (f x , y)

Using reffst and refsnd , which is defined analogously, we can retrieve or update
the values in initcx = (39, ”foo”):

(val reffst) initcx ⇒ 39
(app reffst) (+3) initcx ⇒ (42, ”foo”)
(app refsnd) (const ”bar”) initcx ⇒ (39, ”bar”)

Note that when we partially apply the app functions by removing initcx in the
last two examples, we obtain functions of type cx → cx : a context update. We
include such a function in the new FForm type, which we now present.

4.2 Forms with References

In the transformed library, shown in the right-hand side of Fig. 4, every form has
access to the same context, whose type equals the subject type of the topmost
form composition. The new FForm type clearly shows this: a form no longer
depends on an initial value for itself, but rather on an initial context ; and instead
of producing a final value, it produces a final context update. In the OK button
event handler, this update will be applied to the initial context, yielding a final
context.

As the new definition of entry′ shows, an atomic form is now provided by the
programmer with a reference value. This determines which part of the context
it edits: the val function retrieves an initial value from this part and the app
function writes the final value to this part. The Ref type contains the form’s
subject type, in this case String . How the programmer obtains such a reference
value is explained in Sect. 4.3.

The combinator � is replaced by �. The resulting composite form distributes
the initial context among its components unaltered, instead of splitting it. Con-
versely, instead of pairing two final component values, it constructs a joint con-
text update by sequencing both component updates (this time, the function
composition operator is lifted into the IO monad).



44 S. Evers, P. Achten, and J. Kuper

FunctionalForms stage 1 FunctionalForms stage 2

type FForm t w =
Window w → t →
IO (Layout , IO t)

type FForm cx w =
Window w → cx →
IO (Layout , IO (cx → cx ))

entry′ :: FForm String w
entry′ = λw init →

do pentry ← entry w [text := init ]
return ( widget pentry

, get pentry text
)

entry′ :: Ref cx String → FForm cx w
entry′ (Ref val app) = λw initcx →

do pentry ← entry w [text := val initcx ]
return ( widget pentry

, do t ← get pentry text ;
return $ app $ const t

)

(�) :: FForm t1 w → FForm t2 w
→ FForm (t1, t2) w

form1 � form2 = λw (init1, init2) →
do (lay1, getfin1) ← form1 w init1

(lay2, getfin2) ← form2 w init2
return ( row 5 [lay1, lay2]

, liftM2 (, ) getfin1 getfin2 )

(�) :: FForm cx w → FForm cx w
→ FForm cx w

form1 � form2 = λw initcx →
do (lay1, getupd1) ← form1 w initcx

(lay2, getupd2) ← form2 w initcx
return ( row 5 [lay1, lay2]

, liftM2 (.) getupd1 getupd2 )

— actually a template for deriving:
row′ ::

Int → [FForm cx w ] → FForm cx w
margin′ ::

Int → FForm cx w → FForm cx w
label′ :: String → FForm cx w
...

declare2 :: ((Ref cx t1, Ref cx t2) → z )
→ Ref cx (t1, t2) → z

declareL :: ([Ref cx t ] → z )
→ Ref cx [t ] → z

... — implementation: see running text

runInDialog :: Window w →
FForm t (CPanel ()) →
t → IO t

runInDialog :: Window w →
(Ref cx cx → FForm cx (CPanel ())) →
cx → IO cx

convert :: (t1 → t2, t2 → t1) →
FForm t2 w → FForm t1 w

convert (f , finv ) form = λw init →
do (lay , getfin) ← form w $ f init

return (lay , liftM finv getfin)

convert :: (t1 → t2, t2 → t1) →
(Ref cx t2 → z ) → (Ref cx t1 → z )

convert (f , finv ) refToForm ref =
refToForm (refiso • ref )
where refiso = Ref f (λg → finv . g . f )

Fig. 4. Transforming the combinator library
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Since the arguments of � are of the same type, the first problem in Sect. 3.2
is solved: � can easily be generalized to take a list of forms instead of two (and a
margin width value), thereby implementing the lifted version row′ of wxHaskell’s
layout combinator row . As the context update for base case [], we return id ,
the unit value for function composition. This is also the solution for lifting zero-
argument layout combinators like label .

The second problem is also solved: the two operands of � (and for row′: all
the forms in the list) can be freely swapped without any effect on the initial value
for the components or the final value for the composite form.7 We can conclude
that this combinator has no influence on the functionality of a form anymore;
indeed it is merely a lifted layout combinator.

In fact, using � as a template, we have lifted all of wxHaskell’s layout com-
binators into the FForm domain.8 However, for simplicity’s sake, we will still
restrict our use of layout combinators to � in the rest of this section.

4.3 Constructing the Subject Type with References

Since the new layout combinators do not construct the subject type, it has to be
done in another way: using reference values. For now, we are mainly concerned
with subject types consisting of nested pairs. We can derive the reference values
to their elements using the reference values to the elements of a simple pair, reffst
and refsnd . This is done by ‘normally’ composing their val functions (fst and
snd), while composing their app functions (appfst and appsnd) in the reverse
order. For example, a reference to the c value in (a, (b, (c, d))) is constructed
with:

Ref (fst . snd . snd) (appsnd . appsnd . appfst)

This pattern of constructing new reference values can be captured with the
operator • for composition of references:

(•) :: Ref b c → Ref a b → Ref a c
w • v = Ref (val w . val v) (app v . app w)

The reference value above can now be written reffst • refsnd • refsnd . With the •
operator, we can also construct new forms in a compositional way. We illustrate
this by means of the doorForm example, which is not compositional when defined
in a näıve way:

doorFormNC :: FForm (String ,Bool) w
doorFormNC = entry′ reffst � availForm refsnd

7 Provided that some conditions hold, e.g. that none of the atomic forms is supplied
with the same reference value. A formal proof of this can be found in [2].

8 Alternatively, the FForm domain can be structured as a monad. The monadic lifting
functions can then be used for this purpose.
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This form can only be used as a top-level form; it cannot be usefully joined with
another form, because doorFormNC � otherForm would force the context type
of otherForm to be (String ,Bool) as well. Compare this with the compositional
way of defining doorForm:

doorForm :: Ref cx (String ,Bool) → FForm cx w
doorForm ref = entry′ (reffst • ref ) � availForm (refsnd • ref )

This form can be used as a component of a larger form. Just like the atomic
forms, it should be supplied with a reference value pointing to its subject type
(String ,Bool) in a larger context cx . It uses this to derive reference values to a
String and a Bool for its sub-forms.

To enforce this pattern of form construction, the library does not export
reference creation functions, but only the subject type combinator declare2:

declare2 :: ((Ref cx t1, Ref cx t2) → z ) → Ref cx (t1, t2) → z
declare2 refsToForm ref = refsToForm (reffst • ref , refsnd • ref )

Using this combinator, the same doorForm definition can be written as:

doorForm = declare2 $ λ(name, avail) →
entry′ name � availForm avail

To enable the use of a compositional form like doorForm (i.e. parameterized by
a reference value) at the top level, the new runInDialog is defined to take just
this kind of form as its argument. It applies it to refid = Ref id id , the unit
element for • (turning doorForm back into doorFormNC ). This is what equates
the context type of every form to the subject type of this topmost form.

The new convert function also transforms compositional forms. It does this
by transforming the reference value that gets passed to a form. Interestingly,
this transformation can be performed by composing it with the appropriate
isomorphism reference; see Fig. 4 for details. Although the type of convertL
changes due to the type change of convert, its textual definition remains the
same. The same holds for the user-defined availForm in the doorForm example.

4.4 Reference Values for Other Subject Types

Up to this point, we have restricted the composite subject types to pairs. Of
course, we can easily extend the approach to tuples of higher arity by defining
declare3 et cetera.9 Using the same scheme as before, it is also possible to define
references to the head and tail of a list:

refhead :: Ref [t ] t
refhead = Ref head apphead where apphead f (x : xs) = f x : xs

9 Using Template Haskell[5], these definitions can be generated automatically. Further-
more, Haskell’s type classes can be used to unite the declare functions.
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reftail :: Ref [t ] [t ]
reftail = Ref tail apptail where apptail f (x : xs) = x : f xs

Subsequently, we can define the list of references to all possible list elements,
and a subject type combinator for a list (note how declareL resembles declare2):

refslist :: [Ref [t ] t ]
refslist = refhead : map (• reftail) refslist

declareL :: ([Ref cx t ] → z ) → Ref cx [t ] → z
declareL refsToForm ref = refsToForm $ map (• ref ) refslist

The following example illustrates the use of the functions defined in this section.

5 Elaborate Example

To give an impression of the concise declarative style of form programming with
FunctionalForms, we present a more elaborate example. While we have thus far
kept the atomic form entry′ as simple as possible for clarity, we use a more
flexible version here, with a small adaptation: every atomic form is extended
with a property list, which it passes on to its corresponding control.

The form we define is shown in Fig. 6; it edits a list of three alarms. Every
alarm consists of three components: a value indicating whether the alarm is
enabled, a time setting and a message. This information is encoded in a value
of type (Bool , Int ,String), where the integer represents the number of minutes
elapsed since midnight.

The corresponding code can be found in Fig. 5. In alarmListForm, an infinite
list of references is generated by declareL and bound to refs. Then, makeBox
assigns each reference to an alarmForm and puts a box around it. Finally, the
first three boxes are taken from the list and put in a column.

An alarmForm splits its reference into three parts, which it distributes over
a checkBox′, a timeForm and an entry′. The last two are arranged in a grid,
together with two labels (which are aligned middle-left in their cell). The check
box is placed left of the grid.

A timeForm converts the total number of minutes into a value for hours
and a value for minutes using div and mod , and assigns the corresponding two
references to a pair of spin controls. For these controls, minimum and maximum
values are set, as well as a custom size.

6 Related Work

The notion of compositional references was introduced by Kagawa[6] as a means
to compose mutable (i.e. destructively updatable) data structures, such as arrays,
in a functional language. Although it was proposed as a primitive data type,
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alarmListForm :: Ref cx [(Bool , Int ,String)] → FForm cx w
alarmListForm = declareL $ λrefs →

column′ 10 $ take 3 $ zipWith makeBox [1..] refs
where

makeBox nr ref = boxed′ (”Alarm ” + + show nr) (alarmForm ref )

alarmForm :: Ref cx (Bool , Int ,String) → FForm cx w
alarmForm = declare3 $ λ(enab, time,msg) →

margin′ 3 $ row′ 8 [ checkBox′ [] enab
, grid′ 5 5

[ [floatLeft′ $ label′ ”time :”, timeForm time]
, [floatLeft′ $ label′ ”message :”, entry′ [] msg ]
]

]
timeForm :: Ref cx Int → FForm cx w
timeForm = convert (splittime, jointime) $ declare2 $ λ(hrs,mins) →

row′ 2
[ spinCtrl′ 0 23 [outerSize := sz 40 20] hrs
, spinCtrl′ 0 59 [outerSize := sz 40 20] mins
]

where splittime total = (total ‘div ‘ 60, total ‘mod ‘ 60)
jointime (hours,minutes) = 60 ∗ hours + minutes

Fig. 5. Definition code for alarm list form

Fig. 6. Appearance of alarm list form

module Alarms(main) where

import Graphics.UI .WX
import FForms

main = start $
do f ← frame []

final ← runInDialog f
alarmListForm init

print final
close f

init =
[ (True, 450, ”wake up”)
, (False, 645, ”meeting”)
, (False, 1140, ”dinner”)
]

Fig. 7. Startup code for alarm list form

Kagawa also gives a functional account of the reference type. Our references
resemble this (except that we use an apply function instead of a write function
to facilitate composition) so we use the name compositional functional references.
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Closely related are lenses[7], which are also pairs of accessor and modificator
functions. Several operators, including composition, are used to combine lenses
into a large lens which is the program; this program specifies a bidirectional
transformation between model and view.

Although we have chosen for an underlying GUI library with an object ori-
ented style (which is more widely accepted), declarative form programming is
probably achieved most easily on top of a declarative GUI library like FranTK[8]
or Fudgets[9]. The latter even defines a form combinator >·< which closely resem-
bles � (see the corresponding PhD thesis[10], chapter 29). To obtain a layout
flexibility similar to ours, a unique name can be assigned to each sub-fudget;
these names are used in a name layout combinator which is applied to the com-
posite fudget. They play the same role as our references, but:

– Fudget names refer to parts of the layout. We believe that from a top-down
design perspective, it is more natural to name the parts of a data structure,
because this is designed first and less susceptible to change.

– Fudget names are identifier values. Generating these (unique) values is an
extra responsibility for the programmer that our approach does not have.

In functional GUI libraries which are more or less ‘object oriented’, GUI parts
are related using pointers to the controls themselves, instead of to the data
structures they edit (our approach) or their layout (the Fudgets approach). Like
we have shown in Sect. 2, the wxHaskell control creation functions return these
pointers as values in the IO monad. In Clean Object I/O[3], they are generated by
a shared environment at user request; in a GUI library for the Curry language[11]
(which has a more declarative flavour), these pointers are implemented using free
logic variables.

There are several functional libraries for Web form programming. We men-
tion WASH/CGI[12] here; this article provides an overview of the others. With
WASH/CGI, the programmer can refer to the (typed) value in a Web form using
input handles; like wxHaskell’s control pointers, these are returned as monadic
values by creation functions.

XForms[13], the recent W3C standard for declarative Web forms, also takes
the approach of naming parts (XML elements) of the data structure. This is
done in the first part of an XForms definition, the XForms Model. It also provides
every element with an initial value and possibly type or value constraints. In a
separate second part, the XForms User Interface, GUI controls are bound to
these elements by referring to their names.

Generic Graphical Editor Components (GECs)[14] use their ‘subject type’ to
convey layout information. A generic function[15] automatically derives the GUI
for any given subject type; to create a different GUI for a certain type, one can
specialize this function. In order to release this rigid coupling between subject
type and layout, abstract GECs[16] differentiate between a domain type and a
view type. The GUI is derived from the view type; mapping functions relate
domain values to view values, quite like in our convert function. Like Fudgets,
GECs differ from forms in their ability to react to user events during their whole
lifetime and to dynamically create new GECs for editing new values.
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7 Conclusions and Future Work

We have introduced FunctionalForms, a combinator library which facilitates the
programming of forms in a functional language. (Alternatively, it can be seen as
an embedded domain-specific language for forms.) First we showed how to build
a combinator library capturing the form abstraction on top of an underlying
GUI library with an object oriented programming style. This solved the prob-
lems of low-level programming like verbosity, but had a drawback: it coupled
subject type structure and layout combinator structure together. Then we used
compositional functional references in a novel way to release this dependency;
this also allowed us to exploit the full power of the layout combinators from the
underlying library wxHaskell.

Forms have limited functionality: value editing only affects the rest of the
system after the lifetime of a form, and forms can only edit a static, finite,
product-like structure of values. While we have already investigated the use
of sum-like structures[2] and synchronizing forms briefly, these are yet to be
integrated into one framework. However, our results are already of practical
use.10

A major advantage of our technique is that it does not depend on a special
GUI library or language construct. Our earlier work[2], in which we applied
the technique to the Clean Object I/O library[3], supports this statement. In
fact, the key characteristic of our use of compositional functional references is
very general: it allows two different structures to be built from the same set of
elements. Therefore, we believe that it can be applied in other areas of functional
programming as well.
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Abstract. Landin’s SECD machine was the first abstract machine for
the λ-calculus viewed as a programming language. Both theoretically as a
model of computation and practically as an idealized implementation, it
has set the tone for the subsequent development of abstract machines for
functional programming languages. However, and even though variants
of the SECD machine have been presented, derived, and invented, the
precise rationale for its architecture and modus operandi has remained
elusive. In this article, we deconstruct the SECD machine into a λ-
interpreter, i.e., an evaluation function, and we reconstruct λ-interpreters
into a variety of SECD-like machines. The deconstruction and reconstruc-
tions are transformational: they are based on equational reasoning and
on a combination of simple program transformations—mainly closure
conversion, transformation into continuation-passing style, and defunc-
tionalization.

The evaluation function underlying the SECD machine provides a
precise rationale for its architecture: it is an environment-based eval-
apply evaluator with a callee-save strategy for the environment, a data
stack of intermediate results, and a control delimiter. Each of the com-
ponents of the SECD machine (stack, environment, control, and dump)
is therefore rationalized and so are its transitions.

The deconstruction and reconstruction method also applies to other
abstract machines and other evaluation functions.

1 Introduction

Forty years ago, Peter Landin wrote a profoundly influencial article, “The Me-
chanical Evaluation of Expressions” [27], where, in retrospect, he outlined a
substantial part of the functional-programming research programme for the fol-
lowing decades. This visionary article stands out for advocating the use of the
λ-calculus as a meta-language and for introducing the first abstract machine
for the λ-calculus (i.e., in Landin’s terms, applicative expressions), the SECD
machine. However, and in addition, it also introduces the notions of ‘syntactic
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sugar’ over a core programming language; of ‘closure’ to represent functional
values; of circularity to implement recursion; of thunks to delay computations;
of delayed evaluation; of partial evaluation; of disentangling nested applications
into where-expressions at preprocessing time; of what has since been called de
Bruijn indices; of sharing; of what has since been called graph reduction; of call
by need; of what has since been called strictness analysis; and of domain-specific
languages—all concepts that are ubiquitous in programming languages today.
The topic of this article is the SECD machine.

Since “The Mechanical Evaluation of Expressions,” many other abstract ma-
chines for the λ-calculus have been invented, discovered, or derived [16]. In fact,
the literature simply abounds with derivations of abstract machines—though
with one remarkable exception: there is no derivation of Landin’s original SECD
machine, even though it was the first such abstract machine. Since its incep-
tion, the SECD machine has been the starting point of many university courses
and textbooks and the topic of many variations and optimizations, be it for its
source language (call by name, call by need, other syntactic constructs, includ-
ing control operators), for its environment (de Bruijn indices, de Bruijn levels,
explicit substitutions, higher-order abstract syntax), or for its control (proper
tail recursion, one stack instead of two). Yet in forty years of existence, it has not
been derived or reconstructed. The common agreement is that there is something
special, something original and still unexplained about the SECD machine.

The goal of this article is to pinpoint and explain the originality of the SECD
machine. To this end, we show how to mechanically deconstruct the SECD ma-
chine into an evaluator for applicative expressions and then how to rationally
reconstruct a variety of SECD-like machines. This deconstruction–reconstruction
is actually interesting in itself because it provides a bridge between small-step
operational semantics (in the form of an abstract machine) and denotational
semantics (in the form of a compositional evaluation function). It is also gen-
eral because it applies to other evaluators and other abstract machines [1]. The
derivation is based on a combination of simple, correct, and well-known program-
transformation tools: CPS transformation [13, 41], delimited continuations [12],
defunctionalization [14, 37], and closure conversion [27]. In fact, these transfor-
mations are so classical that one could almost say that the present work could
have been carried out years ago, would it be only for Piet Hein’s gentle reminder
that Things Take Time [24].

1.1 Deconstruction of the SECD Machine

Let us outline our deconstruction of the SECD machine, before substantiating
it in Section 2. The SECD machine is defined as one transition function over a
quadruple—a stack of intermediate values (of type S), an environment (of type
E), a control stack (of type C), and a dump (of type D):

run : S * E * C * D -> value

This transition function is complicated because it has several induction variables.
Our single creative step is to first disentangle it into four transition functions,
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each of which has one induction variable, i.e., operates on one element of the
quadruple:

run_c : S * E * C * D -> value

run_d : S * D -> value

run_t : term * S * E * C * D -> value

run_a : S * E * C * D -> value

Depending on the control stack, run c dispatches towards run d if the control
stack is empty, run t if the top of the control stack contains a term, and run a if
the top of the control stack contains an apply directive.

– We observe that these four functions are in defunctionalized form (the control
stack and the dump are defunctionalized data types and two of the four func-
tions are the corresponding apply functions), and we refunctionalize them,
eliminating the two apply functions:

run_t : term * S * E * C * D -> value

run_a : S * E * C * D -> value

where C = S * E * D -> value

D = S -> value

– We observe that the result is in continuation-passing style, and we transform
it back to direct style, eliminating the dump continuation:

run_t : term * S * E * C -> S

run_a : S * E * C -> S

where C = S * E -> S

– We observe that the result is almost in continuation-passing style, mod-
ulo the reinitialization of a continuation when evaluating the body of a λ-
abstraction, and we transform it back to direct style with a control delimiter,
eliminating the control continuation:

run_t : S * E -> S * E

run_a : S * E -> S * E

– We observe that the result threads a data stack of intermediate results, and
we rewrite it to do without, eliminating the stack:

run_t : term * E -> value * E

run_a : value * value * E -> value * E

– We observe that the result is in closure-converted form, and we unconvert
it, eliminating the closures.

– We observe that the result is a compositional evaluator in direct style.

Given a disentangled transition function for the SECD machine, all the ob-
servations above are in some sense unavoidable (though the author is well aware
that to a man with a hammer, the world looks like a nail). The order of these
transformations, however, is not fixed. Both closure unconversion and data-stack
elimination could occur earlier in the deconstruction.
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1.2 Denotational Content of the SECD Machine

The end result of the deconstruction outlined in Section 1.1 shows that the
denotational content of the SECD machine is a (curried) evaluation function of
type

term -> E -> value * E

where term is the type of a term, value is the type of a value, and E is the type of
an environment mapping variables to values. This evaluator maps a term t into
an ML function. This denotation maps an environment e in which to evaluate t

into a pair (v, e’), where v is the value corresponding to t and e’ is the same
environment as e.

This evaluator is traditional in that it is composed of one ‘eval’ function
(run t above) to evaluate terms, and one ‘apply’ function (run a above) to apply
functions. (An alternative to this traditional eval–apply model is the push-enter
model of Krivine’s machine [26] and of the spineless tagless G-machine [33].)
This evaluator, however, is also unconventional in that:

1. its environment is managed in a callee-save fashion (witness the environment
paired with the resulting value), and

2. it uses a control delimiter to evaluate the body of λ-abstractions.

It seems to us that these two properties account both for the specificity and for
the intriguing originality of Landin’s SECD machine:

Specificity: The two properties show that the evaluation mechanism of the
SECD machine is environment-based, that the environment is threaded and
saved in a callee-save fashion, and that the body of each λ-abstraction is eval-
uated afresh. The rest—closures, stack, control, and dump—are inessential
programming artefacts.

Originality: Environments are usually managed in a caller-save fashion in inter-
preters, and relatively rare are programs that use delimited continuations.
(In fact, control delimiters were invented a quarter of a century after the
SECD machine [12,18].)

1.3 Overview

We first detail the deconstruction of the SECD machine into a compositional
evaluator in direct style (Section 2). We then illustrate how to reconstruct a
variety of SECD-like machines (Section 3), including one with an instruction
set, and we conclude.

1.4 Prerequisites and Domain of Discourse

We use pure ML as a meta-language. We assume a basic familiarity with Stan-
dard ML and with reasoning about ML programs. In particular, given two ML
expressions e and e’ we write e ∼= e’ to express that e and e’ are observationally
equivalent.
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The source language. The source language is the λ-calculus, extended with lit-
erals (as observables). A program is a closed term.

structure Source

= struct

type ide = string

datatype term = LIT of int

| VAR of ide

| LAM of ide * term

| APP of term * term

type program = term

end

The (polymorphic) environment. We make use of a structure Env satisfying the
following signature:

signature ENV

= sig

type ’a env

val empty : ’a env

val extend : Source.ide * ’a * ’a env -> ’a env

val lookup : Source.ide * ’a env -> ’a

end

The empty environment is denoted by Env.empty. The function extending an
environment with a new binding is denoted by Env.extend. The function fetching
the value of an identifier from an environment is denoted by Env.lookup.

Expressible and denotable values. There are three kinds of values: integers, the
successor function, and function closures:

datatype value = INT of int

| SUCC

| CLOSURE of value Env.env * Source.ide * Source.term

Following Landin [27], function closures pair a λ-abstraction (i.e., its formal
parameter and its body) and the environment of its declaration.

The initial environment. We define the successor function in the initial environ-
ment:

val e_init = Env.extend ("succ", SUCC, Env.empty)

2 Deconstruction of the SECD Machine

We now substantiate the deconstruction outlined in Section 1.1.
Section 2.1 presents the SECD machine as originally specified and classi-

cally presented in the literature, i.e., as one tail-recursive transition function
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run. Section 2.2 presents an alternative specification where run is disentangled
into four mutually (tail) recursive transition functions run c, run d, run t, and
run a, each of which has one induction variable. This disentangled definition is
in defunctionalized form, and Section 2.3 presents its higher-order counterpart.
This counterpart is in continuation-passing style, and Section 2.4 presents its
direct-style equivalent. This equivalent is almost in continuation-passing style,
which is characteristic of delimited control. Section 2.5 presents the correspond-
ing direct-style evaluator, which uses a control delimiter. This evaluator uses a
data stack of intermediate results. Section 2.6 presents the corresponding stack-
less evaluator. This evaluator is in closure-converted form. Section 2.7 present
the corresponding higher-order evaluator. This evaluator is compositional and
assessed in Section 2.8.

2.1 The Original Specification of the SECD Machine

The SECD machine is a transition function over a state with four components:

– A stack register holding a list of intermediate results. This component has
type value list.

– An environment register holding the current environment. This component
has type value Env.env.

– A control register holding a list of control directives. This component has
type directive, where directive is defined as follows:

datatype directive = TERM of Source.term

| APPLY

– A dump register holding a list of triples. Each triple contains snapshots of the
stack, environment, and control registers. This component has type (value

list * value Env.env * directive list) list.

The SECD machine is defined with a set of transitions between its four com-
ponents. Here is its transitive closure:

(* run : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = directive list *)

(* D = (S * E * C) list *)

fun run (v :: nil, e’, nil, nil) (* 1 *)

= v

| run (v :: nil, e’, nil, (s, e, c) :: d) (* 2 *)

= run (v :: s, e, c, d)

| run (s, e, (TERM (LIT n)) :: c, d) (* 3 *)

= run ((INT n) :: s, e, c, d)

| run (s, e, (TERM (VAR x)) :: c, d) (* 4 *)

= run ((Env.lookup (x, e)) :: s, e, c, d)

| run (s, e, (TERM (LAM (x, t))) :: c, d) (* 5 *)

= run ((CLOSURE (e, x, t)) :: s, e, c, d)
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| run (s, e, (TERM (APP (t0, t1))) :: c, d) (* 6 *)

= run (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d) (* 7 *)

= run ((INT (n+1)) :: s, e, c, d)

| run ((CLOSURE (e’, x, t)) :: v’ :: s, e, APPLY :: c, d) (* 8 *)

= run (nil, Env.extend (x, v’, e’), (TERM t) :: nil, (s, e, c) :: d)

(* evaluate0 : Source.program -> value *)

fun evaluate0 t (* 9 *)

= run (nil, e_init, (TERM t) :: nil, nil)

The SECD machine does not terminate for divergent source terms. If it becomes
stuck, an ML pattern-matching error is raised (alternatively, the co-domain of
run could be made value option and an else clause could be added). Otherwise,
the result of the evaluation is v for some ML value v : value.

In the full version of this article [11], we analyze each of the transitions above;
this analysis is however inessential for what follows.

2.2 A More Structured Specification

In the definition of Section 2.1, all the possible transitions are meshed together
in one recursive function, run. Let us factor run into several mutually recursive
functions, each of them with one induction variable.

In this disentangled definition,

– run c interprets the list of control directives, i.e., it specifies which transition
to take if the list is empty, starts with a term, or starts with an apply
directive. If the list is empty, it calls run d. If the list starts with a term, it
calls run t, caching the term in an extra component (the first parameter of
run t). If the list starts with an apply directive, it calls run a.

– run d interprets the dump, i.e., it specifies which transition to take if the
dump is empty or non-empty, given a valid stack.

– run t interprets the top term in the list of control directives.
– run a interprets the top value in the current stack.

(* run_c : S * E * C * D -> value *)

(* run_d : S * D -> value *)

(* run_t : Source.term * S * E * C * D -> value *)

(* run_a : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = directive list *)

(* D = (S * E * C) list *)

fun run_c (s, e, nil, d)

= run_d (s, d)

| run_c (s, e, (TERM t) :: c, d)

= run_t (t, s, e, c, d)

| run_c (s, e, APPLY :: c, d)

= run_a (s, e, c, d)
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and run_d (v :: nil, nil)

= v

| run_d (v :: nil, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

and run_t (LIT n, s, e, c, d)

= run_c ((INT n) :: s, e, c, d)

| run_t (VAR x, s, e, c, d)

= run_c ((Env.lookup (x, e)) :: s, e, c, d)

| run_t (LAM (x, t), s, e, c, d)

= run_c ((CLOSURE (e, x, t)) :: s, e, c, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e, (TERM t0) :: APPLY :: c, d)

and run_a (SUCC :: (INT n) :: s, e, c, d)

= run_c ((INT (n+1)) :: s, e, c, d)

| run_a ((CLOSURE (e’, x, t)) :: v’ :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v’, e’), nil, (s, e, c) :: d)

(* evaluate1 : Source.program -> value *)

fun evaluate1 t

= run_t (t, nil, e_init, nil, nil)

Proposition 1 (full correctness). Given a source program, evaluate0 and
evaluate1 either both diverge or yield expressible values that are structurally
equal.

2.3 A Higher-Order Counterpart

In the disentangled definition of Section 2.2, there are two possible ways to
construct a dump (nil and cons) and three possible ways to construct a list of
control directives (nil, cons’ing a term, and cons’ing an apply directive). (We
could phrase these constructions as two data types rather than as two lists.)

These data types, together with run d and run c, are in the image of defunc-
tionalization (run d and run c are the apply functions of these two data types).
The corresponding higher-order evaluator reads as follows.

(* run_t : Source.term * S * E * C * D -> value *)

(* run_a : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = (S * E * D) -> value *)

(* D = S -> value *)

fun run_t (LIT n, s, e, c, d)

= c ((INT n) :: s, e, d)

| run_t (VAR x, s, e, c, d)

= c ((Env.lookup (x, e)) :: s, e, d)

| run_t (LAM (x, t), s, e, c, d)

= c ((CLOSURE (e, x, t)) :: s, e, d)
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| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e,

fn (s, e, d) => run_t (t0, s, e,

fn (s, e, d) => run_a (s, e, c, d),

d),

d)

and run_a (SUCC :: (INT n) :: s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_a ((CLOSURE (e’, x, t)) :: v’ :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v’, e’),

fn (s, _, d) => d s,

fn (v :: nil) => c (v :: s, e, d))

(* evaluate2 : Source.program -> value *)

fun evaluate2 t

= run_t (t, nil, e_init,

fn (s, _, d) => d s,

fn (v :: nil) => v)

The resulting evaluator is in continuation-passing style, with two nested con-
tinuations. It inherits the characteristics of the SECD machine, i.e., it threads
a stack of intermediate results, an environment, a control continuation, and a
dump continuation. As an evaluator, it is a bit unusual in that:

1. it has two continuations (C and D),
2. it threads a stack of intermediate results (S), and
3. the environment is saved by the recursive callees, not by the callers. (Usually,

the environment is not threaded but saved across recursive calls.)

Otherwise the interpreter follows the traditional eval–apply schema identified by
McCarthy in his definition of Lisp in Lisp [30], by Reynolds in his definitional
interpreters [37], and by Steele and Sussman in their lambda-papers [40, 41, 42,
43]: run t is eval and run a is apply.

Proposition 2 (full correctness). Given a source program, evaluate1 and
evaluate2 either both diverge or yield expressible values that are structurally
equal.

2.4 A Dump-Less Direct-Style Counterpart

The evaluator of Section 2.3 is in continuation-passing style and therefore it is
in the image of the CPS transformation [9]. Its direct-style counterpart reads as
follows, renaming run t as eval and run a as apply.

(* eval : Source.term * S * E * C -> stack *)

(* apply : S * E * C -> S *)

(* where S = value list *)

(* E = value Env.env *)

(* C = S * E -> S *)
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fun eval (LIT n, s, e, c)

= c ((INT n) :: s, e)

| eval (VAR x, s, e, c)

= c ((Env.lookup (x, e)) :: s, e)

| eval (LAM (x, t), s, e, c)

= c ((CLOSURE (e, x, t)) :: s, e)

| eval (APP (t0, t1), s, e, c)

= eval (t1, s, e, fn (s, e) =>

eval (t0, s, e, fn (s, e) =>

apply (s, e, c)))

and apply (SUCC :: (INT n) :: s, e, c)

= c ((INT (n+1)) :: s, e)

| apply ((CLOSURE (e’, x, t)) :: v’ :: s, e, c)

= let val (v :: nil) = eval (t, nil, Env.extend (x, v’, e’),

fn (s, _) => s)

in c (v :: s, e)

end

(* evaluate3 : Source.program -> value *)

fun evaluate3 t

= let val (v :: nil) = eval (t, nil, e_init, fn (s, _) => s)

in v

end

Proposition 3 (full correctness). Given a source program, evaluate2 and
evaluate3 either both diverge or yield expressible values that are structurally
equal.

2.5 A Control-Less Direct-Style Counterpart

All but two of the calls to eval are tail calls in the evaluator of Section 2.4.
Thus, except for these two calls, the evaluator is in CPS. These two calls are
characteristic of delimited continuations [12, 18]. To account for them, we use
the control delimiter reset. Operationally, this control delimiter is moot here
because no continuations are captured [12,25]. It can therefore simply be defined
as taking a thunk and forcing it, as we do below; in general of course, the
definition is not as simple [20]. (Omitting reset leads to a dump-less variant
of the SECD machine [11, Section 3.6].) With such a definition of reset, the
direct-style counterpart of the evaluator reads as follows:

(* (* mock-up *) reset : (unit -> ’a) -> ’a *)

fun reset thunk

= thunk ()

(* eval : Source.term * S * E -> S * E *)

(* apply : S * E -> S * E *)

(* where S = value list *)

(* E = value Env.env *)
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fun eval (LIT n, s, e)

= ((INT n) :: s, e)

| eval (VAR x, s, e)

= ((Env.lookup (x, e)) :: s, e)

| eval (LAM (x, t), s, e)

= ((CLOSURE (e, x, t)) :: s, e)

| eval (APP (t0, t1), s, e)

= let val (s, e) = eval (t1, s, e)

val (s, e) = eval (t0, s, e)

in apply (s, e)

end

and apply (SUCC :: (INT n) :: s, e)

= ((INT (n+1)) :: s, e)

| apply ((CLOSURE (e’, x, t)) :: v’ :: s, e)

= let val (v :: nil, _)

= reset (fn () => eval (t, nil, Env.extend (x, v’, e’)))

in (v :: s, e)

end

(* evaluate4 : Source.program -> value *)

fun evaluate4 t

= let val (v :: nil, _)

= reset (fn () => eval (t, nil, e_init))

in v

end

Proposition 4 (full correctness). Given a source program, evaluate3 and
evaluate4 either both diverge or yield expressible values that are structurally
equal.

2.6 A Stack-Less Counterpart

In the evaluator of Section 2.5, eval and apply thread a data stack of intermediate
results. The stackless counterpart of this evaluator reads as follows.

(* eval : Source.term * E -> value * E *)

(* apply : value * value * E -> value * E *)

(* where E = value Env.env *)

fun eval (LIT n, e)

= (INT n, e)

| eval (VAR x, e)

= (Env.lookup (x, e), e)

| eval (LAM (x, t), e)

= (CLOSURE (e, x, t), e)

| eval (APP (t0, t1), e)

= let val (v1, e) = eval (t1, e)

val (v0, e) = eval (t0, e)

in apply (v0, v1, e)

end
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and apply (SUCC, INT n, e)

= (INT (n+1), e)

| apply (CLOSURE (e’, x, t), v’, e)

= let val (v, _)

= reset (fn () => eval (t, Env.extend (x, v’, e’)))

in (v, e)

end

(* evaluate5 : Source.program -> value *)

fun evaluate5 t

= let val (v’, _)

= reset (fn () => eval (t, e_init))

in v’

end

Proposition 5 (full correctness). Given a source program, evaluate4 and
evaluate5 either both diverge or yield expressible values that are structurally
equal.

2.7 A Compositional Counterpart

The evaluators of Sections 2.3, 2.4, 2.5, and 2.6 represent functional values with
closures. In Section 1.4, this representation was epitomized by the definition of
values:

datatype value = INT of int

| SUCC

| CLOSURE of value Env.env * Source.ide * Source.term

A function closure pairs a source λ-abstraction and the environment of its dec-
laration.

Because of this representation, none of the evaluators above are compositional
in the sense of denotational semantics [38, 44, 45].1 On the other hand, because
they use closures, these evaluators are in closure-converted form. We closure-
unconvert the latest one as follows.

datatype value = INT of int

| SUCC

| FUN of value -> value

(* eval : Source.term * E -> value * E *)

(* apply : value * value * E -> value * E *)

(* where E = value Env.env *)

fun eval (LIT n, e)

= (INT n, e)

1 To be compositional, they should solely define the meaning of each compound term
as a composition of the meaning of its parts.
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| eval (VAR x, e)

= (Env.lookup (x, e), e)

| eval (LAM (x, t), e)

= (FUN (fn v

=> reset (fn ()

=> let val (v’, _)

= eval (t, Env.extend (x, v, e))

in v’

end)),

e)

| eval (APP (t0, t1), e)

= let val (v1, e) = eval (t1, e)

val (v0, e) = eval (t0, e)

in apply (v0, v1, e)

end

and apply (SUCC, INT n, e)

= (INT (n+1), e)

| apply (FUN f, v, e)

= (f v, e)

(* evaluate6 : Source.program -> value *)

fun evaluate6 t

= reset (fn () => let val (v’, _) = eval (t, e_init)

in v’

end)

Proposition 6 (full correctness). Given a source program, evaluate5 and
evaluate6 either both diverge or yield expressible values that are related by closure
conversion.

The evaluator above is not unique, though. We can also choose a callee-save
representation of functions, as developed in Section 2.7 of the full version of this
article [11].

2.8 Assessment

Through a series of meaning-preserving steps, we have transformed the SECD
machine (i.e., the transitive closure of a state-transition function) into an eval-
uator (i.e., a compositional evaluation function). For each of these language
processors—the original one, the intermediate ones, and the final one—evaluating
an ill-typed source term is undefined (i.e., in ML, evaluation gets stuck and a
pattern-matching error is raised); evaluating a divergent source term diverges;
and evaluating a well-typed and convergent source term converges to a value.

It seems to us that this deconstruction of the SECD machine into an eval-
uation function sheds a new light on it. Its stack, environment, control, and
dump registers are explained as artefacts of a particular evaluation algorithm:
environment-based with a callee-save strategy, left-to-right call by value, and
with one data stack for intermediate results and two continuations, the inner
one for the current λ-abstraction.
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3 Reconstructions of SECD-Like Machines

Each of the deconstruction steps of Section 2 is reversible. In the full version
of this article [11], we review briefly how to rationally reconstruct a variety of
SECD-like machines: the original SECD machine, a left-to-right SECD machine,
a properly tail-recursive SECD machine, a call-by-name SECD machine, a call-
by-need SECD machine, an SEC machine, an EC machine, an SC machine, a C
machine, an SCD machine, and an SECD machine with an instruction set.

4 Related Work

In his famous 700 follow-up article [28,31], Morris presents a “shorter equivalent”
of the SECD machine as an interpreter written in an applicative language. We
note, though, that while Morris’s interpreter is definitely shorter, it is not strictly
equivalent to the SECD machine. (For example, its environment is saved by the
callers, not by the callees.) Indeed, defunctionalizing the CPS counterpart of
Morris’s interpreter yields a different abstract machine that has one control
stack and no dump. (In fact, this abstract machine coincides with Felleisen et
al.’s CEK abstract machine [17,19].)

In a similar way, in “Call-by-name, call-by-value, and the λ-calculus” [34],
Plotkin formalized the SECD machine with respect to a canonical, caller-save,
evaluation function that is similar to Morris’s. In the light of the reconstruction
presented here, the correctness proof of the SECD machine reduces to proving
the equivalence between a caller-save and a callee-save evaluation function, which
is simpler.

In his formalization of (a tail-recursive version of) the SECD machine [35],
Ramsdell also observes that this machine uses callee-save convention.

5 Conclusion

We have characterized the denotational content of the SECD machine as an eval-
uator with a callee-save strategy for the environment and a control delimiter.2

In doing so, we have outlined a methodology for extracting the denotational
content of abstract machines in the form of a compositional evaluation function.
This methodology is reversible and enables one to extract the (small-step) oper-
ational content of evaluation functions in the form of an abstract machine in a
fairly mechanical way: one closure-converts its expressible and denotable values
to make them first-order; one CPS-transforms the closure-converted evaluation
function to make it tail-recursive, i.e., iterative, and to materialize its control
flow into a continuation; and one defunctionalizes this continuation to make the

2 Landin was aware that abstract machines are interpreters, witness his introduction
of the SECD machine as a way of “interpreting” applicative expressions. (The quotes
are his. The other quotes in the abstract of his article occur when he wrote that his
article contributes to the “theory” of computing.)
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evaluation function first order, thereby obtaining a transition function, i.e., a
finite-state, iterative abstract machine. Optionally, one introduces a data stack
to hold intermediate results. The methodology also scales to other evaluation
functions and other abstract machines; in particular, it applies directly to λ-
calculi extended with computational effects à la Moggi, e.g., control and state,
and to other language paradigms than functional programming [1, 3, 4, 7].

In passing, we have also presented a new application of defunctionalization
and a new example of control delimiters in programming practice.
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A Toolbox

In this appendix, we review the elements of the toolbox mentioned in Section 1.

A.1 CPS Transformation

A λ-term is transformed into continuation-passing style (CPS) by naming each
of its intermediate results, by sequentializing the computation of these results,
and by introducing continuations. Equivalently, such a term can be first trans-
formed into monadic normal form and then translated into the term model of
the continuation monad [23]. The CPS transformation is abundantly described
in the literature [15,21,36,41].

For example, a term such as λf.λg.λx.f x (g x) is named and sequentialized
into

λf.λg.λx.let v1 = f x in let v2 = g x in v1 v2

and its call-by-value CPS counterpart reads as

λk.k (λf.λk.k (λg.λk.k (λx.f x λv1.g x λv2.v1 v2 k))).

In both the sequentialized version and the CPS version, v1 names the result of
f x and v2 names the result of g x.
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A.2 Delimited Continuations

A λ-term uses delimited continuations when some of its intermediate continu-
ations are reinitialized to the identity function or when not all calls to a con-
tinuation are evaluation-order independent [12]. For example, in contrast to the
CPS abstraction

λf.λk.f 42 k

which is strictly in continuation-passing style (all calls are tail calls and all sub-
terms are trivial), the non-CPS abstraction

λf.λk.k (f 42 (λa.a))

uses delimited continuations; the function denoted by f is passed an initial con-
tinuation, and the result of its application is sent to k. This term is therefore
evaluation-order sensitive [34, 37]. The direct-style counterpart of the first ab-
straction,

λf.f 42

is an ordinary λ-term, whereas the direct-style counterpart of the second,

λf.reset(f 42)

uses the control delimiter reset [10, 12, 13, 20, 22, 25, 29]. Should the function
denoted by f capture its continuation, it would capture all of it in the first case
(and applying this captured continuation would be like a jump); in the second
case, however, it would capture only a delimited part of the continuation (and
applying this captured continuation would be like a call). In this article, we make
no other use of reset than to reinitialize the continuation.

A.3 Defunctionalization

In a higher-order program, first-class functions occur as instances of function
abstractions. Often, these function abstractions can be enumerated, either ex-
haustively or more discriminately using a control-flow analysis [39]. Defunctional-
ization is a transformation where function types are replaced by an enumeration
of the function abstractions in this program.

Defunctionalization consumes the results of a control-flow analysis. A defunc-
tionalizer replaces:

– function spaces by an enumeration, in the form of a data type, of the possible
lambda-abstractions that can float there;

– function introduction by an injection into the corresponding data type; and
– function elimination by an apply function dispatching over elements of the

corresponding data type.

For example, let us defunctionalize the following ML program:

fun aux f = (f 1) + (f 10)
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fun main (x, y) = (aux (fn z => z)) * (aux (fn z => x + y + z))

The aux function is passed a first-class function, applies it to 1 and 10, and sums
the results. The main function calls aux twice and multiplies the results. All in
all, two function abstractions occur in this program, in main, as arguments of
aux.

Defunctionalizing this program amounts to defining a data type with two
constructors, one for each function abstraction, and its associated apply function.
The first function abstraction contains no free variables and therefore the first
data-type constructor is constant. The second function abstraction contains two
free variables (x and y, of type integer), and therefore the second data-type
constructor requires two integers.

In main def, the first functional argument is thus introduced with the first
constructor, and the second functional argument with the second constructor and
the values of x and y. In aux def, the functional argument is passed to a (second-
class) function apply that eliminates it with a case expression dispatching over
the two constructors.

datatype lam = LAM1

| LAM2 of int * int

fun apply (LAM1, z)

= z

| apply (LAM2 (x, y), z)

= x + y + z

fun aux_def f = (apply (f, 1)) + (apply (f, 10))

fun main_def (x, y) = (aux_def LAM1) * (aux_def (LAM2 (x, y)))

Defunctionalization was discovered by Reynolds thirty-two years ago [37].
Compared to closure conversion, it has been little used in practice since then,
and has only been formalized over the last few years [5, 6, 32]. More detail can
be found in Danvy and Nielsen’s study [14]. The key observation here is that
defunctionalizing a CPS program yields a transition function [1].

A.4 Closure Conversion

In retrospect, closure conversion is a particular case of defunctionalization, where
the function space has only one constructor and the apply function is inlined.
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Abstract. We present a novel approach to explaining ML type errors:
Since the type system inhibits data flows that would abort the program
at run-time, our type checker identifies as explanations those data flows
that violate the typing rules. It also detects the notorious backflows,
which are artifacts of unification, and warns the user about the possibly
unexpected typing. The generated explanations comprise a detailed tex-
tual description and an arrow overlay to the source code, in which each
arrow represents one data flow. The description refers only to elementary
facts about program evaluation, not to the type checking process itself.
The method integrates well with unification-based type checking: Type-
correct programs incur a modest overhead compared to normal type
checking. If a type error occurs, a simple depth-first graph traversal yields
the explanation. A proof-of-concept implementation is available.

1 Introduction

Good explanations relate the unknown to the well-understood: The new insights
can be grasped more easily and they rest on a solid foundation. Unfortunately,
ML type errors seem to evade such desirable explanations, and for well-known
reasons: Types are not explicit, at least not pervasive, in the program source,
unification propagates them between possibly remote program locations and,
finally, the details of error messages are implementation-dependent. To the ex-
perienced programmer, this situation is a nuisance to be overcome by judicious
type annotations. To novice programmers, it is often an insurmountable obstacle,
for they must understand at least four items simultaneously to decode an error
message: the type system, the sources of types in the program, their propagation
by unification — and the type error itself, of course.

Data flows are the common ground on which the type system and the pro-
grammer meet: The type system is meant to inhibit data flows that would cause
the program to abort, while the programmer must at least have expectations
about the way that data is propagated through the program. Therefore, it is a
sensible goal that type errors make explicit the offending data flows that prove
the programmer’s expectations wrong. Such an explanation does relate the error
to the programmer’s preconceptions and good experience has been made with
similar tools [8].
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The task addressed in this paper is to connect formally the intended data
flows to unification-based ML type inference. The proposed method rests on two
ideas:

– Type inference with subtyping [18, 1, 7] can be understood by elementary
data flow reasoning. By augmenting the standard subtyping closure with
reversal of constraints, we obtain a standard unification closure [2], where
subtype relations replace equality. This essential addition distinguishes the
proposed approach from MrSpidey [8]. Explanations for type errors are gen-
erated by annotating each subtyping constraint with a reason for its presence
in the closure, the reason being essentially a trail of the closure computation.

– We avoid the inefficient direct closure computation [14] by extending stan-
dard ML type unification with a graph structure of paths between types.
The paths are maintained at marginal cost and reasons can be reconstructed
whenever a type error occurs.

The explanations thus obtained include a descriptive and detailed textual justi-
fication of single steps similar to type explanation engines [6, 3, 12, 5, 26]. They
also yield program slices [23, 10, 19, 21] and arrow annotations as used in graph-
ical debuggers [8] by omitting parts of the generated information.

The presentation of the paper assumes basic knowledge of type inference for
both ML [17, 24] and subtyping [18, 1, 7].

1.1 Contributions

– We propose to use data flow reasoning to explain ML type errors.
– Our method can be integrated efficiently with a unification-based type checker.
– The generated explanations are detailed and refer only to elementary facts

about evaluation. They have a meaning in terms of data flows that is inde-
pendent of type checking.

– The mentioned source locations are akin to program slices, but carry more
structure that can be employed in selecting among explanations.

1.2 Overview

The introduction continues with a motivation and intuitive justification in Sec-
tion 1.3 and an example explanation in Section 1.4. Section 2 formally introduces
the structure of explanations for subtyping as derived from the introduction.
Section 3 shows how the same explanations can be computed efficiently during
unification. Section 4 discusses the two main issues of future work: The treat-
ment of let-bindings and a transfer from Martelli-Montanari unification [15] to
graph algorithms. Section 5 discusses related work. Section 6 concludes.

1.3 Motivating the Approach

Our method of explanation rests on the intuition that type inference with sub-
typing captures data flows in programs and that these flows can be explained
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in elementary terms. We are now going to discuss these assumptions by stat-
ing several observations about subtyping that motivate the technical develop-
ment in Section 2. The level of presentation is deliberately informal to give a
self-contained, non-technical account of the method. For that purpose, we can
restrict the expression language to a call-by-value λ-calculus.

e ::= x | λx.e | f e

Standard type inference with subtypes [18, 1, 7] traverses an expression by the
following syntax-directed rules to generate a set of initial ≤-constraints.

Γx, x : α � e : β α → β ≤ γ

Γ � λx.e : γ
(Abs)

Γ � x : α α ≤ β

Γ � x : β
(Var)

Γ � f : γ Γ � e : δ γ ≤ α → β δ ≤ α β ≤ ε

Γ � f e : ε
(App)

In a second phase, these constraints are checked for satisfiability to establish
type correctness. We now discuss the entire process with the aim of explaining
all arising constraints in elementary terms.

Type Variables as Code References. The typing rules assign a fresh type variable
to each bound variable and each expression. The mapping from program points
to type variables is made one-to-one in the (Var) rule by using different variables
for the binding location and the particular use. In references to the program, we
therefore augment the source code with a designator that refers to the code’s
role. In (Var), for instance, we distinguish the “binding of variable x” (α) from
the “use of variable x” (β). Type variables thus closely correspond to program
locations and citations from the source code are detailed.

Interpreting Constraints. We argue subsequently that the following interpreta-
tion remains valid throughout type inference. (The word “may” accounts for the
uncertainty induced by control flow in extended languages.)

s ≤ α ≡ “a value of type s may reach location α”
α ≤ t ≡ “a value emerging from location α may be expected to be of type t”
α ≤ β ≡ “a value emerging from location α may reach location β”
s ≤ t ≡ “a value of type s may eventually be expected to be of type t”

Type errors occur from inconsistent constraints s ≤ t, where the constructors
of s and t are not in a subtype relationship. This definition is clear from the last
case of the interpretation.

Initial Constraints describe Data Flows. It is straightforward to check that the
initial constraints in the typing rules have a data flow explanation. The rule
(App), for example, states that “the operator f” (γ) is used as a function,
“the result of e” (δ) flows to “the argument of f” (α) and “the function result
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of f” (β) is the “result of (f e)” (ε). This explanation refers only to elementary
parts of the language, it should be comprehensible to any modestly experienced
programmer. The proposed interpretation is also fulfilled, the only expected and
produced types concern the functions in (App) and (Abs).

Closure describes Data Flows. The initial constraints thus correspond to data
flows in single evaluation steps. To account for their repeated application, stan-
dard type inference closes the initial constraints C under transitivity and decom-
position. If the closure C∗ still contains no inconsistent constraints, the expres-
sion is type-correct.

Transitivity requires that for each pair s ≤ α, α ≤ t ∈ C∗, also s ≤ t ∈ C∗,
which validates the proposed interpretation: If a value of type s may reach α,
and a value from α may be expected to be of type t, then eventually a value of
type s may be expected to be of type t. Simply concatenating the explanations
for the input constraints explains the new constraint.

Decomposition relates the arguments of constructed types. With pairs, for
instance, if s × t ≤ s′ × t′ ∈ C∗, then s ≤ s′, t ≤ t′ ∈ C∗, satisfying the
interpretation: Since a value of type s × t is expected to have type s′ × t′,
extracting the first component yields an s-value where an s′-value is expected,
and symmetrically for the second argument. We call this phenomenon an implicit
flow [12–Section 6], because it occurs by values transported within a larger
data structure. The implicit flow s ≤ s′ is explained by explaining the original
constraint s× t ≤ s′× t′, with a prefix “type s is embedded to s× t” and a suffix
“type s′ × t′ contains s′”.

Decomposition of function types requires for s → t ≤ s′ → t′ ∈ C∗ that
t ≤ t′ ∈ C∗ and s′ ≤ s ∈ C∗. The exchange of left- and right-hand side in s′ ≤ s
is known as contravariance, the second argument to → is treated covariantly.
The interpretation remains valid: A function f : s → t expects a type s and
returns t. Suppose f is called where a function from s′ to t′ is expected. The
call will pass an argument of type s′, although f expects s, and it receives a t
result, although it expects t′. Such a detailed explanation is necessary, however,
only if higher-order functions are used. In a normal application f e, the closure
of the initial constraints relates the actual argument e to the formal argument
of f , the explanation can skip the contravariant function constructor.

Remark 1. Decomposition also handles correctly the data flow through poly-
morphic functions, where it distinguishes input and output by variance. Calling
the identity function id : α → α, for instance, with argument s and expected
result ε yields constraints s ≤ α, α ≤ ε, thus finally a data flow s ≤ ε.

Symmetry of Unification. We have thus explained subtyping by elementary data
flows, but ML type inference uses type equality in all constraints [24]. We propose
to stick to subtype constraints nevertheless, but to extend the closure operation:
For each constraint s ≤ t, we add t ≥ s. Note that this reversal swaps the
syntactic positions of the types, as symmetry of equality demands, but preserves
the subtype relation. To explain the reversed constraint, we reverse the original
explanation. The proposed interpretation remains valid if we read t ≥ s as s ≤ t.
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Upper and Lower Bounds. With the introduction of ≥, transitivity must com-
bine constraints s ≤ α and α ≥ t. If we read the second one as t ≤ α, the
interpretation suggests that values of types s and t reach location α. The result
constraint to be added by transitivity is thus

s ∨ t ≡ “values of types s and t may reach a common location”

A valid explanation for this constraint is that any values reaching a common
program point must have consistent types. (Note that the above two constraints
could be generated for the branches of an if-expression as introduced below.) We
also need a complementary constraint for the result of transitivity with s ≥ α
and α ≤ t.

s ∧ t ≡ “a value from some location may be used as both s and t”

Having added these new relations, new transitivity rules are required. Consider
for instance s ∨ α, α ≥ t ∈ C∗. By the interpretation, values of type s and from
α may reach a common program point, and furthermore t-values may reach α.
Hence, we add s∨ t ∈ C∗. Instead of continuing this case analysis with numerous
transitivity rules, we abstract transitivity over relations ♦1,♦2 ∈ {≤,≥,∧,∨}
and use a single rule: For s♦1α, α♦2t, we add s(♦1	♦2)t. The cases are factored
into the multiplication table for 	, which turns out to be an associative operation.

In the very same manner, we need a case analysis for decomposition and
reversal, which we again factor into operations ←−· (reverse) and · (dual). The
general reversal rule transforms s♦t into a new constraint t

←−♦s, where the in-
terpretation suggests ←−≤ =≥, ←−≥ =≤, ←−∨ = ∨, ←−∧ = ∧. Decomposition on the
contravariant function argument then adds for s → t♦s′ → t′ a new constraint
s♦s′, with ≤ =≥, ≥ =≤, ∨ = ∧ and ∧ = ∨.

Backflows. Unfortunately, the above development fails to deliver intuitive expla-
nations for a class of ML type errors that are known in the literature as backflows
[25] or poisoning [19]. They are characterized by type information that is prop-
agated against the direction of data flows. Suppose we add an if-expression and
type check

if x then x else 3

The type error bool �= int cannot be explained by the constraints introduced
so far. Call α the type of x with uses β, β′ and call γ the result of the entire
expression. The closure with reversal contains a chain

bool ≥ β ≥ α ≤ β′ ≤ γ ≥ int

in which due to the alternating ≤ and ≥ constraints no single program location
with an inconsistency can be identified. We cannot avoid backflows without
changing the type system, but we will warn the programmer that the typing
may be unexpected. We introduce a new relation ∼ with

s ∼ t ≡ “s must be consistent with t, but this is an artifact”
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Minimizing and Selecting Explanations. In general, there are several possible
derivations for a constraint s♦t ∈ C∗, hence different explanations can be pro-
duced for a type clash between s and t. The arising need to select among these
is not peculiar to our approach. Slicing-based methods [19, 21, 10] use heuristics
to minimize the reported slice in some sense to present a concise explanation to
the programmer.

We argue, however, that the selection of a “best” explanation to be reported
can rely on structural properties of our explanations. The most important one
is that explanations are linear sequences, rather than sets, of program locations
and data flows. In theses sequences, “detours” that explain a constraint α♦α,
which represents a “null” data flow, can obviously be elided without loosing
information.

Consider the following example.1 The argument type of f is constrained by
int, string and by the type of x, although the latter constraint does not con-
tribute to the type error. With the arrows below indicating single data flows,
the error is explained as “Inconsistent values flow together.” Note that x is not
mentioned, because we discard the detour from the argument type of f to the
type of x and back again.

fun f x ->
f 1; f x; f "X"�� �����

�

Furthermore, we propose to sort constraints by their subtyping relation before
displaying the explanations. First, constraints s ≤ t or s ≥ t indicate possible
data flows that would abort the program. Next, constraints s ∧ t and s ∨ t are
still understandable as elementary consistency requirements. Last, the backflows
s ∼ t establish a type error, but their explanation is not based only on data flow
reasoning. Within each group of constraints, the shorter explanations should be
preferred. Furthermore, the user should be able to browse the arrow overlays
and select an understandable explanation by visual impression.

1.4 An Example Explanation

We now discuss how a generated explanation would be used. The steps described
in the text are supported by an (X)Emacs mode that lets the user select and
highlight different portions of the explanation and source code interactively. The
arrows are drawn by a patch to XEmacs-21.4.15. The overlays displayed below
are generated by an alternative LATEX back-end in the prototype implementation.

Towards a comparison with related work in Section 5, we choose an exam-
ple due to Haack and Wells [10–Section 1.2]. They highlight the program slice
contributing to the type error as shown, but it remains the programmer’s re-
sponsibility to understand the exact relations between the indicated locations.

val f = fn x => fn y => let val w = y + in w :: y

1 I am grateful to one of the reviewers for pointing out the difficulty of the example.



78 H. Gast

Consider now our explanation generated according to Section 1.3.2 At the coars-
est level of display, it consists of a message “Inconsistent use of values” and an
arrow overlay to the source code. Each arrow links two consecutive program lo-
cations in the explanation, hence it represents roughly one elementary data flow
occurring at run-time. We simply choose the first characters of the mentioned
expressions for the start- and endpoints and refuse to start a new arrow if it has
zero length; in this case, one arrow may cover several elementary data flows.

let f = fun
x -> fun y ->
(fun w -> w :: y)
(y + 1)

�
�����

�

����	
�4

�3

�2

�1

Note that the same source locations are mentioned as in the slicing output,
albeit with more precise relationships indicated. The two uses can be traced
directly from the origin y to the two operators + and :: .

If this version is not comprehensible, we can refer to the textual description
in Figure 1. The indentation level corresponds to decomposition steps and the
interactive mode hides text by indentation. First, only Line 1 and the arrow
overlay appear. Selecting Line 1 expands the next level with Lines 2–8 and 15–
23. We can then navigate to the line that corresponds to the incomprehensible
arrow. For now, the arrow numbers refer us to the correct explanations for the
represented data flows. The second display level thus shows the offending types
int and list(. . .) together with the offending data flows.

Selecting Line 8 expands Lines 9–14. This part of the explanation contains
the exact reasoning, in terms of decomposition, why the argument 1 of + must
an int. (A similar reason is not necessary for the constructor :: due to its inter-
nal, uncurried representation.) We have claimed earlier that such an explanation
should be hidden for normal function applications, and this is accomplished sim-
ply by indenting that part of the explanation: The undesirable output coincides
with the decomposition step.

2 Explanations in Subtyping

We are now going to formalize the ideas presented in Section 1.3 by type inference
with subtyping [18, 1, 7]. The main technical contribution of this section is to
extend the standard definitions to keep track of the reason why a constraint has
become necessary. The reason then permits a straightforward generation of the
explanations sought in Section 1.3.

2.1 Language, Types and Type Inference

We work in an applicative language with pattern matching and the ML type
system [17]. In the following grammar, c is a value constructor and T is a type

2 We replace the “let val w =” with an application, see Section 4.
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1 Inconsistent use of values:

2 Forward data flow

3 "y"

4 (type of variable from environment) �1

5 result of "y"

6 (argument 1 must match formal argument) �2

7 argument 1 to "+"

8 [which is contained in] �2

9 (argument 1 to "+" -> (argument 2 to "+" -> function result of "+"))

10 (operator type must match the actual arguments) �2

11 result of "+"

12 (type of variable from environment)

13 (int -> (int -> int))

14 [which has the following part]

15 int

16 Forward data flow

17 "y"

18 (type of variable from environment) �3

19 result of "y"

20 (must match formal argument type) �4

21 constructor argument 1 "w :: y"

22 (must match formal argument type)

23 list(constructor "w :: y")

Fig. 1. An Example Explanation

constructor (including type constants, the function space →, and pairing ×,
which we write infix). For the present, only predefined polymorphic constants
can have type schemes S, the polymorphic let is discussed in Section 4.

e ::= x | e e′ | λx.e | c(e1 . . . en) | case e of p1 ⇒ e1 . . . pn ⇒ en

p ::= x | c(p1 . . . pn)
t ::= α | T (t1 . . . tn)
S ::= ∀α1 . . . αn.t

Type inference in constraint form is standard [24, 18, 7, 1]. The rules in Figure 2
use a typing judgment Γ � e : t |C to generate from type assumptions Γ and
expression e a type t and a set C of initial constraints. (All type variables in the
rules are fresh for each application. The notation ·̃ denotes sets or sequences.)
Each of these constraints is annotated with an initial reason, an atomic token
encoding the explanation of one initial data flow. A corresponding judgment
Γ �p e : t |C treats patterns by reversing the subtype relations to account for
the data flow during pattern matching.
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Γ, x : ∀α̃.s � x : β | s[γ̃/α̃] ≤Var β (Var/use)

Γ � f : α |C Γ � e : δ |C′

Γ � f e : γ |C ∪ C′ ∪ {α ≤Apply/op β → γ, δ ≤Apply/arg β}
(Apply)

Γ, x : ∀ε.α � e : β |C
Γ � λx.e : γ |C ∪ {α → β ≤Abs γ} (Abs)

i = 1 . . n : Γ � ei : αi |Ci c : ∀β̃.s1 × · · · × sn → t ∈ Γ

Γ � c(e1 . . . en) : δ

| (
⋃n

i=1
Ci) ∪ {αi ≤Ctor/arg si[γ̃/β̃]}n

i=1 ∪ {t[γ̃/β̃] ≤Ctor/res δ}

(Ctor)

Γ � e : α |C
i = 1 . . n : Γi = Γ ∪̇{x : βix}x∈V (pi) Γi �p pi : α′

i |Ci Γi � ei : γ′
i |C′

i

Γ � case e of p1 ⇒ e1 . . . pn ⇒ en : γ

| (
⋃n

i=1
Ci ∪ C′

i) ∪ {α ≤Case/in αi}n
i=1 ∪ {γ′

i ≤Case/res γ}n
i=1

(Case)

Γ, {x : α} �p x : β | {β ≤Pvar/def α} (PVar)

i = 1 . . n : Γ �p pi : αi |Ci c : ∀β̃.s1 × · · · × sn → t

Γ �p c(p1 . . . pn) : γ

| (
⋃n

i=1
Ci) ∪ {si[δ̃/β̃] ≤PCtor/arg αi}n

i=1 ∪ {γ ≤PCtor/res t[δ̃/β̃]}

(PCtor)

Fig. 2. Type inference rules

2.2 Closure for Unification with Reasons

We now render directly the considerations from Section 1.3 in formal terms by
defining a closure for unification ·U . The goal of the technical development is
to establish that for any constraint set C = {si ≤ ti}n

i=1 the closure CU is
consistent iff unification of {si = ti}n

i=1 does not fail with a clash. (The occurs-
check is treated in Section 3.5.)

Subtype Relations. We begin with the five relations occurring in constraints:

♦ ::=≤ | ≥ | ∨ | ∧ | ∼

With these relations, a case analysis on transitivity, reversal and decomposition
rules became necessary which we avoided by abstracting over the exact relations
and by introducing operations 	, ←−· and ·. The latter two operations were already
completely specified. For 	 we have derived ∨	 ≥= ∨ from the interpretation of
subtyping constraints. By similar arguments, we complete the first of the following
tables.

	 ≤ ≥ ∨ ∧ ∼
≤ ≤ ∨ ∨ ∼ ∼
≥ ∧ ≥ ∼ ∧ ∼
∨ ∼ ∨ ∼ ∼ ∼
∧ ∧ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼

c ≤ ≥ ∨ ∧ ∼
c ≥ ≤ ∧ ∨ ∼

c ≤ ≥ ∨ ∧ ∼
←−c ≥ ≤ ∨ ∧ ∼
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Proposition 1. 	, ←−· , and · satisfy the equalities:

(a 	 b) 	 c = a 	 (b 	 c) ←−−
a 	 b = ←−

b 	 ←−a ←−←−a = a a = a

Reasons. Section 1.3 generates explanations during the closure computation.
We now introduce reasons, that trail the closure process instead. Herein, i is
an argument position and v is a variance (v = + for covariance, v = − for
contravariance) in decomposition, I is an initial reason and t, t′ are types.

r ::= I |↑i,v (t, r′, t′) | r(t)r′ | ←−r

The depth of reason r (depth(r)) is the maximal nesting depth of ↑i,v constructs
in r.

The desired explanations are recovered by a recursive traversal: We decode
initial reasons, report ↑i,v as a decomposition step at argument i with variance v,
show r(t)r′ as transitivity through the point t and render ←−r by generating an
explanation in reverse order.

Closure Computation. Section 1.3 has generalized closure computation to the
five possible constraints, the following rules merely add maintenance of reasons.
Note that the constructor in the reason identifies the applied rule, while its
arguments capture just those parts of the input constraints that are not present
in the result, yet are required to generate the explanation.

s♦rt, t♦′r′
s′ trans=⇒ s(♦ 	♦′)r(t)r′

s′

T (s1 . . . sn)♦rT (t1 . . . tn) decomp=⇒
{
si♦↑i,+(T (s1... sn),r,T (t1... tn))ti

}n

i=1
T �=→

s → s′♦rt → t′ decomp→=⇒ s♦↑1,−(s→s′,r,t→t′)
t, s′♦↑2,+(s→s′,r,t→t′)t′

s♦rt
reverse=⇒ t

←−♦←−r s

Correctness and Completeness. Comparing CU with standard unification
closure [2–Definition 2.11, Theorem 2.15] directly yields the following result.

Proposition 2. Let C = {si ≤Ii ti}n
i=1 be subtyping constraints. CU is consis-

tent iff unification of {si = ti}n
i=1 does not fail with a symbol clash.

3 Explanations by Unification

The closure process in Section 2 formally links the explanations sought in Sec-
tion 1.3 to type inference with subtyping. However, it is too inefficient [14] to
be executed in the type checker for every program. We therefore augment uni-
fication to maintain paths from which reasons can be reconstructed in case of a
type error. Their addition requires constant cost per unification step, such that
type-correct programs incur only a marginal overhead.
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3.1 Paths and Constraint Reconstruction

A path is a sequence of types and relations. As will be made precise below, it rep-
resents a chain of constraints that are combined by transitivity, where the com-
mon type in the transitivity rule is shared between two subsequent constraints.
A path thus resembles our casual abbreviation for a sequence of constraints used
in Section 1.3.

Paths are defined by the following grammar, where t is a type and I, i, v are
as in the definition of reasons (Section 2.2). We will write t♦p to abstract over
the relation.

p ::= t | t ↓i,v p | t ↑i,v p | t ≤I p | t ≥I p

There is a side condition on paths of the form t ↑i,v t′♦p and t′ ↓i,v t♦p. Here t′

must be constructed and its ith argument must be t. Furthermore, t’s constructor
must covariant in this argument iff v = + and contravariant for v = −. We say
that p links s to t (written s

p
== t) if s is the first and t is the last type in p.

By abuse of notation, s
p

== t ∈ P means p ∈ P with s
p

== t. The concatenation
p ◦ q of two paths p, q is the partial function defined inductively on the path
structure by

t ◦ (t♦q) = t♦q (t♦p) ◦ q = t♦(p ◦ q)

For a set P of paths, P ∗ is the closure of P under concatenation of elements.
A path p with s

p
== t contains enough information to reconstruct a constraint

s♦rt. The main idea is to “parse” p with a stack automaton to identify pairs of
↑i,v and ↓i,v. The relation ♦ is computed by the operations from Section 2.2.

Let p be a path, S a stack 〈sj♦rj

j tj , ↑ij ,vj 〉nj=1, C a partial constraint s♦r

(without the final type). Then C(S,C, P ) is a partial function defined recur-
sively on the structure of p with base C(ε, s♦r, t) = s♦rt. The recursion step
C(S,C, P ) = C(S′, C ′, P ′) does a case analysis on the first relation of P and the
top of S; it is given by the following table to highlight the parsing analogy.

S C P S′ C ′ P ′

S s♦r t ≤I p S s(♦� ≤)r(t)I p

S s♦r t ≥I p S s(♦� ≥)r(t)I p

S s♦r t ↑i,v t′♦rp (s♦rt, ↑i,v)S t′♦r p

(s′♦′r′
t′, ↑i,+)S s♦r t ↓i,+ p S s′(♦′ 	♦)r′(t′)↑i,+(s,r,t) p

(s′♦′r′
t′, ↑i,−)S s♦r t ↓i,− p S s′(♦′ 	♦)r′(t′)↑i,−(s,r,t) p

Define C(t♦rq) := C(ε, t♦r, q). A path p is balanced if C(p) is defined.

Reconstruction proceeds by nesting levels of ↑i,v / ↓i,v. As usual in parsing,
the stack S contains the currently open ↑i,v-levels. The top level is represented
by the partial constraint s♦r, whose right-hand side is implicitly the first type
in the remaining path. Let us focus on the treatment of relations, the reasons are
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then straightforward. The first line extends the top level. Suppose the first type
in p is t′. Then implicitly, the top level is s♦t, the next constraint is t ≤ t′. By
transitivity, this yields the result s(♦	 ≤)t′, but t′ is kept implicit. The second
line is analogous. The third line starts a new ↑i,v-level, saving the already seen
constraint for the current level on the stack and opening up a new top level.
The fourth line extends the second level s′♦′t′ with the top level s♦t. By the
side condition on paths, t′ is ith argument of s. Decomposition of s♦t at the ith
argument thus yields t′♦s′′ and transitivity yields s′(♦′ ◦ ♦)s′′ as the new top
level constraint. Again by the side condition, s′′ occurs at the start of p and is
kept implicit. The fifth line does the same for contravariant positions.

Remark 2. The reasons reconstructed by C have a special form: Reversal ←−·
appears only at initial reasons, and transitivity is always left-associative, that is
r(t)(r′(t′)r′′) is replaced by (r(t)r′)(t′)r′′. Using Proposition 1, and by analogy
with negation normal form in classical logic [9], we call this class of reasons the
normal reasons. For the programmer, the normal reasons are desirable: Reversal
of initial reasons is intuitively clear, and the left-associative transitivity yields a
linear structure on program locations within one explanation.

3.2 Unification with Paths

We use a variant of the Martelli-Montanari unification algorithm [15] for the
main reason that it does not perform substitutions. The algorithm works on
multiequations {α̃} = {t̃} where α̃ is a set of type variables and t̃ is a multiset
of non-variable types. A set of multiequations is compact if their left-hand sides
are disjoint. The function ME(T ) :=

(
{α̃} = {t̃}

)
splits up a set of types T =

{α̃} ∪ {t̃} to a multiequation. We add to this standard data structure a set of
paths P . A unification problem is either ⊥ (failure) or U = (E,S, P ) where E
(equations) and S (solved) are sets of multiequations. The notions of unifier and
most general unifier are defined as usual [15, 2]. We present the algorithm as
rewrite rules on unification problems in Figure 3. We set U =⇒ ⊥ if no rule
applies. Apart from the treatment of reasons, the repeated application of the
first possible rule is equivalent to Algorithm 3 of [15]. Writing =⇒MM for this
repeated application, we thus have immediately:

Theorem 1. Let U be a unification problem. Then σ is a unifier of U iff for
some S, P we have U =⇒MM ({ }, S, P ) and σ is a unifier of S. Furthermore, a
most general unifier for U can be obtained from S [15].

Remark 3. The proviso ∀e ∈ E, k ∈ 1 . . n : αk /∈ FV(e) of Decomposition re-
places the occurs-check. It also entails that the left-hand-side variables need not
be substituted for, because they do not occur in E. Any solvable, compact E
contains a multiequation satisfying the proviso [15–Theorem 3.3 and Corollary].

Remark 4 (Efficiency). The only addition to the original algorithm is the con-
struction of new path elements for the arguments in the decomposition step.
Therefore, the algorithmic complexity of unification does not change.
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Trivial
(
{
{α1 . . . αn} = { }

}
∪ E, S, P ) =⇒ (E,

{
{α1 . . . αn} = { }

}
∪ S, P )

where E is compact

Decomposition
(
{
{α1 . . . αl} = {f(t11 . . . t1m) . . . f(tn1 . . . tnm)}

}
∪ E, S, P )

=⇒ (
{

ME({tij}n
i=1)

}m

j=1
∪ E,{

{α1 . . . αl} = {f(t11 . . . t1m) . . . f(tn1 . . . tnm)}
}
∪ S,

P ∪ {tij ↑j,vj f(ti1 . . . tim), f(ti1 . . . tim) ↓j,vj tij}n
i=1)

where ∀k ∈ 1 . . l : αk /∈ FV(tij), ∀e ∈ E : αk /∈ FV(e),

E is compact, vj = variance(f, j)

Compactification
(
{
{α̃, β̃} = {s̃}, {α̃, γ̃} = {t̃}

}
∪ E, S, P )

=⇒
{
{α̃, β̃, γ̃} = {s̃, t̃}

}
∪ E, S, P )

Fig. 3. Martelli-Montanari Unification

3.3 Type Inference with Explanations

Let C be a set of subtyping constraints with (initial) reasons. Define

(C)= := ({ME({s, t}) | s ≤I t ∈ C}, { }, {s ≤I t, t ≤
←−
I s | s ≤I t ∈ C})

Type inference of expression e in context Γ proceeds as follows:

1. Compute e’s type and subtyping constraints C by Γ � e : t |C.
2. Unify the set (C)= with the algorithm of Section 3.2.
3. If a clash occurs in a multiequation {α̃} = {t1 . . . tn} ∈ (E,S, P )

(a) Compute P ∗ to obtain for i �= j ∈ {1 . . n} the balanced paths ti
pij== tj .

(b) Reconstruct reasons C(pij) = ti♦rij tj .
(c) Produce explanations for the reasons rij .

Remark 5. The set P is implemented by a graph structure on types, where
annotated references between types represent the relations of paths. Steps 3a
and 3b then become a depth-first graph traversal of P , whose size if obviously
linear in the number of unification steps and the program size. Note that C can
be applied incrementally to prefixes of paths, with constant cost per step, such
that unbalanced paths can be filtered immediately.

3.4 Soundness and Completeness

By Theorem 1, the type inference algorithm in Section 3.3 yields the same typ-
ings as the usual ML inference . More importantly for the current paper, the
explanations generated in Step 3c correspond to those analyzed in Sections 1.3
and 2. The following theorem is shown by induction on depth(C(p)) in a straight-
forward manner.
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Theorem 2 (Soundness). Let C be subtyping constraints and (C)= =⇒MM

(E,S, P ). If p ∈ P ∗ with C(p) = c then c ∈ CU .

We have only partially investigated the matter of completeness, but in experi-
ments we have never encountered an example where an expected explanation was
missing. There are two immediate obstacles to completeness: First, according to
Remark 2, only normal reasons will be constructed. This restriction seems rather
beneficial, because two reasons that have the same normal form are equally use-
ful to the programmer. Second, unification from Section 3.2 may fail to discover
all reasons that CU detects, because decomposition requires all top level con-
structors of the multiequation to agree before proceeding. However, as we explain
type errors in the unification process, this restriction appears sensible as well.

Our algorithm does have a weaker completeness property: For any failure of
unification, at least one reason can be reconstructed. Let us call a unification
problem U = (E,S, P ) connected iff for every multiequation {α̃} = {t̃} ∈ E and
each pair s, s′ ∈ {α̃, t̃} we have a balanced p ∈ P ∗ with s

p
== s′. By induction

on the number of unification steps, each unification problem arising in type
inference is connected. For the initial problem, inspect the definition of (·)=; for
the unification steps, the only interesting case is Decomposition, which adds just
the ↑/↓ elements to P that keep the new multiequations connected.

Theorem 3 (Weak Completeness). Let (C)= =⇒MM (E,S, P ). For any
e ∈ E, s, t ∈ e there is a reason r and a path s

p
== t ∈ P ∗ with C(p) = s♦rt.

3.5 Occurs Checks

The method proposed in this paper accommodates the occurs-check as well:
Unification fails if ever an equation α = t must be solved where α occurs in t.
By Theorem 3, there is then at least one path between α and t, and a reason for
the occurs check can be reconstructed.

As a technical complication, the Martelli-Montanari algorithm does not apply
substitutions (Remark 3), thus the offending α may not appear in t immediately.
Instead, for a multiequation e = ({α̃} = {t̃}), the substitution for a variable β
in ti must be retrieved in the multiequation {. . . β . . .} = {t̃′} of the unification
problem. By recursion, the original multiequation e will eventually be reached
and a cycle is established.

4 Future Work

Polymorphic Let. Let and letrec are currently supported in a minimal fashion:
Each binding (-group) is type checked separately, and standard generalization
[17] is applied. The polymorphic value can be used according to Remark 1,
but the explanations do not refer back to the value’s definition. The solution
is conceptually simple (but it could not be integrated smoothly with the data
structures of the prototype implementation): After solving a unification problem
for a binding group, we keep its set of paths P0. Whenever the result type is
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involved in a type error, we add P0 to the current paths P before graph traversal.
As the type t of a polymorphic value is (partially) copied as t′ for each reference,
we add new path elements t′ �→i t and t←� it′ to allow the traversal to proceed
from P to P0 and vice versa. These elements are handled as parentheses in
reconstruction (Section 3.1), and the unique instance identifier i permits sharing
of the path graph P0 between instances. Now data flows are traced through the
definition, because if a polymorphic variable occurs several times in t, then P ∗

0

includes paths between the occurrences (Theorem 3).

Graph-Based Unification. We have used Martelli-Montanari unification for ease
of stating invariants in Section 3, in particular because it never applies sub-
stitutions (Remark 3). We hope to integrate the method with the DAG-based
OCaml implementation [20] by augmenting the record of type nodes with a
field paths containing all the outgoing edges of the path graph. However, the
well-known problem of greedy, left-to-right constraint solution must be tackled
[5, 26, 21, 10, 19, 13].

5 Related Work

Starting from the intentions, our work is most closely related to the static de-
bugger MrSpidey [8], which presents a data flow analysis to the programmer by
an interactive arrow overlay mechanism; clearly, the inspiration for the form of
desirable explanations stems from the screenshots of [8]. Similarly, Hansen and
Shafarenko [11] report type errors in a subtyping discipline by listing the inter-
mediate program points that lead to a given type conflict. Their type language
is restricted to zero-ary constructors, hence they do not require decomposition.
Both approaches do not include the reversal operation shown to be essential for
ML typing in Section 1.3.

Neubauer and Thiemann [19] present a conservative extension of the ML type
system by recursive types, based on Wright’s [25] discriminative unions. Like in
the original application of soft typing, unification can proceed after clashes to
obtain unbiased explanations. Every type carries a flow set annotation, a slice
in which each location is additionally flagged as a source or sink of the type.
Symmetry of equality is accounted for by flow classes of equivalent locations,
which are listed in type errors involving one type in the class.

Chitil [5] and Beaven and Stansifer [3] propose that understanding a type
error is enabled by a detailed understanding of the inferred types. Chitil [5]
generates compositional type deductions. His type inference computes a principal
typing for each subexpression separately and unifies types and environments at
application nodes. The user can interactively browse the resulting type deduction
to explore type errors. Beaven and Stansifer [3] generate detailed explanations
of inferred types by printing the entire type deduction. They include program
fragments that necessitate the bindings of type variables, which they achieve by
annotating the type graph, similarly to [23, 6] below.

Another group of approaches focuses on the explanation of the unification
steps that have led to the error. They annotate the respective unification data
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structures by program locations (or slices) that induced the bindings. Wand [23]
modifies the unification algorithm to keep track of the source locations that cor-
respond to each variable binding. Duggan and Bent [6] instrument unification
to decorate the type graph with the program locations that lead to equality
constraints. Haack and Wells [10] use a constraint-based formulation. They an-
notate the generated equality constraints with the introducing program location
and unification propagates this information. The resulting slice at an inconsis-
tent constraint is minimized for error reporting, where a slice is minimal if no
constraint can be removed without removing the inconsistency. Unfortunately,
minimization is not unique and it is not clear which solution is chosen by the
presented greedy algorithm. Stuckey et al. [21] augment the approach of Haack
and Wells by an explanation of Haskell’s type class constraints. Report genera-
tion involves three steps, each of which is based on heuristics: Selection of error
location, of the relevant types and of the source for each relevant type. Yang et
al. [26, 27] aim at imitating type explanations given by human experts. Their
algorithm H types subexpressions independently by unifying assumption envi-
ronments (similar to [5]). They annotate the AST nodes with their inferred types,
and types with the AST nodes responsible for the their introduction. Unlike slic-
ing approaches, they also record justifications similar to our initial reasons, but
without the data flow interpretation. McAdam [16–Chapter 5] generalizes previ-
ous techniques for explanations. He constructs a graph with program locations,
type constructors and type variables as nodes and establishes required equalities
by inserting edges. The result of ML type inference, as well as several earlier
forms of explanation can be read from the graph structure.

Heeren et al. [13, 12] aim at specialized typing rules for libraries. The as-
pect that is akin to our work is their type graphs [12–Section 6]. These graphs
include auxiliary links for derived or implicit equalities (see Section 2.2) that
directly connect all types within one equivalence class. Unlike our work, the de-
rived equivalences arise from tracing unification instead of the directed data flow
reasons, thus the classes can be reported only as sets, not as linear chains.

The work by Braßel [4] and Tip and Dinesh [22] also aims at reporting pro-
gram slices that are responsible for the error, yet their means are different: Braßel
[4] replaces selected parts of the erroneous program with an expression of most
general type; if the error disappears, he concludes that the replaced part must
be responsible for the error. He then proceeds by several heuristics to refine the
set of replaced program parts. Tip and Dinesh [22] implement their type checker
by term rewriting; whenever a type checking judgement, expressed as a redex,
fails, dependence tracking reveals those subterms of the input program that have
led to the failing redex.

6 Conclusion

We have presented an efficient method to generate comprehensible explanations
for ML type errors based on elementary data flow reasoning. The explanations
have a linear structure that can be visualized in an interactive environment and
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they carry sufficient information to enable a judicious filtering before output.
They provide both a detailed textual description and a high-level arrow overlay
to the source code that are closely related: Each arrow in the overlay represents
one or more elementary data flows mentioned in the description. The notori-
ous backflows, which are artifacts that propagate type information against the
direction of data flows, are indicated to the programmer.

The language under consideration includes higher-order functions, compound
data structures and matching. Data flow reasoning is maintained in a natural
fashion through all of these constructs by introducing implicit flows and taking
variance of type constructors into account (Section 1.3). A full treatment of
polymorphic let has been deferred to a graph-based implementation (Section 4).

The method integrates well with a unification-based type checker (Section 3).
The overhead for type-correct programs is modest (Remark 4) and the generation
of explanations is no more complex than the preceding type check (Remark 5).
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Abstract. Corecursive definitions are usually only meaningful in func-
tional languages with lazy evaluation semantics, because their domain
and range may contain cyclic data graphs. By inspection of the call
stack, it is possible in a strict evaluation environment to detect cycles in
a computation, and thus transform finite input graphs in finite time. This
paper presents a virtual machine with suitable cycle handling primitives
and operational semantics to implement strict evaluation of corecursive
functions. We discuss the impact on calling conventions and definition
constructs, and demonstrate the relevance of the introduced features by
application to the domain of infinite precision decimal arithmetics.

1 Introduction

Corecursion is an alternative interpretation of functions defined in terms of them-
selves. It is more powerful than recursion in the sense that domain and range sets
are not assumed to be well-founded. Corecursion can be formulated in terms of
either non-well-founded algebra or coalgebra. Whereas non-well-founded algebra
is quite popular in the context of lazy functional programming, coalgebra is a
promising, but rather exotic meta-theory.

For an advanced treatment of constructive corecursion in a non-well-founded
setting, see [14]. We shall focus on a coalgebraic setting in this article, instead. It
is of course not possible to give a self-contained account of coalgebra or corecur-
sive function theory within a couple of pages. But some intuition can be gained
by starting with a classical remark about recursion cited by Wikipedia[18]:

If you already know what recursion is, just remember the answer. Otherwise,
find someone who is standing closer to Douglas Hofstadter than you are;
then ask him or her what recursion is.

Andrew Plotkin

This interesting algorithm can be dualized as follows:

Try as hard as you can to understand what corecursion is; then find someone
who might do better and send him or her to acquire more knowledge. Mean-
while, do not hesitate to tell everybody what you think that corecursion is.

C. Grelck et al. (Eds.): IFL 2004, LNCS 3474, pp. 90–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Any reader with a firm algebraic background is likely to feel uneasy about
this strategy, suspecting fearsome things such as infinite regression and vicious
circles. But corecursion can be perfectly sound and productive.

Example 1 (Exact Division). Consider the calculation of a rational number by
division of two naturals, carried out using an algorithm that dates back to the
16th century:

19 : 33 = 0.57
0

19
165
25
231
19

There are two ways to proceed from the depicted state of calculation.

1. More digits can be obtained by iterated subtraction, yielding arbitrarily pre-
cise approximations 0.57575757 . . . . This is what a lazy functional program
would do.

2. A cycle can be detected, in this case by the repetition of the remainder 19,
yielding the exact, periodic value 0.57. This behavior is closer to the spirit
of coalgebra. All further examples in this article shall be elaborations of the
same idea.
This kind of “termination without base case” magic does not work for all
problems, however: there is no such shortcut for calculating an irrational
number such as π or

√
2. ��

1.1 Strict Corecursion

Corecursion is a powerful definition technique for functions working on poten-
tially infinite data. Corecursive computation is commonly associated with lazy
evaluation, because a corecursively defined function does not terminate when
evaluated näıvely with strict algebraic semantics.

Categorial languages such as Charity[5] introduce final coalgebra semantics
as a sound theoretical basis for primitive corecursion. Starting from the obser-
vation that traditional implementations of strict functional languages with heap
cells and references to encode data graphs are semantically non-final coalgebras
that may well serve as approximations of a final coalgebra, it is possible to de-
velop a technique of strict evaluation of corecursive functions. This technique,
its encoding and optimization have been presented in [15], and its proof in [16].

Example 2 (Primitive Corecursion in a Nutshell). Consider the following well-
known type definitions:

type list [α] == nil | cons(α, list [α])
type nat == zero | succ(nat)
type maybe[α] == nothing | just(α)
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The goal of defining the function fun length : list [α] → nat can be achieved in
two ways. The first (and much more popular) way is induction on the algebraic
structure of the domain type,1 which we shall call the recursive form:

def length(nil) == 0
def length(cons(hd , tl)) == succ(length(tl))

Note that there is a single algebra function that implements all constructor op-
erations of nat , and its inverse is a coalgebra function implementing the decon-
structors:

fun cnat : maybe[nat ] → nat fun dnat : nat → maybe[nat ]
def cnat(nothing) == 0 def dnat(0 ) == nothing
def cnat(just(n)) == succ(n) def dnat(succ(n)) == just(n)

The length function can be redefined by coinduction on the coalgebraic structure
of its codomain type. This corecursive form is obtained from the recursive form
simply by left composition with dnat :

def dnat(length(nil)) == nothing
def dnat(length(cons(hd , tl))) == just(length(tl))

To understand this definition, consider that dnat implements the totalized pre-
decessor function. In a lazy setting, both forms are equivalent and determine
full evaluation for finite list arguments, and arbitrarily deep approximation for
infinite list arguments.

In a strict setting however, the second form is more powerful, because it de-
fines also the full normal form of provably infinite lists, by establishing a relation
between the tail observation on a list and the predecessor observation on its
length. Observations are defined as the following partial functions:

def tail(cons(hd , tl)) == tl def pred(succ(n)) == n

A list l is provably infinite, iff there is some n > 0 such that tailn(l) is defined
and the same object as l, i.e., if l is represented by a finite cycle. An example
with n = 4 looks like this:

◦ ◦

◦ ◦

�tail


tail�tail

�
tail

length−−−−→
◦ ◦

◦ ◦

�pred


pred�pred

�
pred

If a cycle of the same size is produced as the result, i.e., if predn(length(l)) is
defined and the same object as length(l), one can easily verify that this satisfies
the corecursive definition of length. Finally, a number that is its own (transitive)
predecessor must be ω, which is the expected result. ��

1 Induction patterns are underlined.
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In a purely functional context, identical function incarnations will yield iden-
tical results. What may seem trivial leads to the conclusion that computations
on cyclical data need traverse each cycle only once, as long as the result can
be reused upon reentry to the cycle. An effective implementation requires early
assignment of return values, leaving uninitialized “holes” in data structures to
be filled at arbitrarily deeply nested points of program execution. This is com-
bined with online stack inspection to detect cyclical reincarnation. The concept
of stack inspection is better known from the area of security (see [6]), but it is
naturally well-suited to the task of cycle detection, as well.

Basing an evaluation technique on stack inspection causes some practical
problems. Stack inspection, as a very low-level operation, is

1. hardly portable, and
2. reserved to privileged code in many “secure” environments.

Therefore, a prototypic implementation of strict corecursion will not be given as
a coding scheme targeting an existing platform, but as a dedicated operational
model, the virtual machine V�M.2

1.2 Scope and Structure of This Paper

This paper outlines the design of a virtual machine dedicated to the strict eval-
uation of both recursive and corecursive functions. It does not give a complete
specification. Rather, the principal features are introduced and motivated along-
side a series of small, but nontrivial application examples. The examples are
presented in first-order functional pseudocode. The semantics of this language
and its mapping to V�M code are only explained in instructive cases; the rest is
left as an exercise to the reader. The complete, executable code for the exam-
ples in this paper is roughly 500 lines in “assembly language” format, and too
redundant to justify a full listing.

The focus of this paper lies on the vocabulary and operation of the V�M
itself, discussed at a fairly high level of abstraction. Peripheral topics such as
compilation from a functional front-end language to V�M code, verification of
V�M code, or (just-in-time/offline) compilation from V�M to microprocessor code
are not covered.

1.3 Application Domain: Exact Rational Decimal Arithmetics

Fractional numbers of infinite precision have succeeded as an instructive exam-
ple of lazy evaluation: in [8], lazy coding techniques are presented for handling
infinite sequences of digits, and for carry propagation in infinite precision deci-
mal arithmetics. We shall adopt the problem, and propose a strict counterpart
of the lazy solution. Comparing the elegance of the two solutions is more a mat-

2 The arrow in V�M is meant to denote a function arrow, as well as a graph edge, as
well as a pointer.
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ter of taste than a scientific topic, but the strict technique has some objective
advantages:

1. It has no pathological unproductive cases, and
2. because results are fully evaluated to normal form, numbers may not only

be computed, but also compared and printed with infinite precision.

Of course, the price to be paid is the exclusion of irrational numbers, since only
periodic sequences of digits can have a finite normal form.

To our best knowledge, the generalization of the arithmetical standard algo-
rithms from finite to periodical decimal fractions has not been subject of any
publication before, so these algorithms can be considered as a contribution in
the area of applied functional programming on their own, in isolation from the
V�M machinery that implements them.

1.4 Expressive Power

The techniques of strict corecursion and lazy recursion extend the simple func-
tional paradigm of strict recursion in complementary ways:

1. Lazy recursion is elegant at the construction of infinite objects, but fails at
their analysis. Example problems that exceed the power of lazy recursion are
comparison and pretty-printing of cyclic data.

2. Strict corecursion is elegant at the construction and analysis of cyclic ob-
jects, but fails at non-periodic generation. Example problems that exceed
the power of strict corecursion are unbounded enumeration algorithms such
as the sieve of Eratosthenes or the Hamming problem.

2 Virtual Machine Basics

2.1 Architecture and Status

The virtual machine V�M presented in this paper resembles the design (but not
the complexity) of imperative machines such as the Java VM[9], or the .NET
CLR[4], rather than that of functional machines such as the spineless, tagless
G-Machine[12] of Haskell or the Charity[5] machine. The main design differences
to the mentioned object-oriented environments are:

1. Higher-order functions and closures instead of virtual methods as the para-
digm for dynamic dispatching. These are not implemented in the current
prototype, however.

2. A collection of referential transparency invariants to regulate the side effects
of write accesses to memory, especially for the remote filling of holes in
partially initialized data. These invariants arise naturally from the use of a
purely functional front-end language (and a conservative compiler), or can
be enforced by V�M code verification.
If this restriction is loosened, it should be possible for imperative and core-
cursive code to coexists and interoperate on a V�M.
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There is a running implementation of the central tools, the V�M toolkit. All
V�M toolkit components are written in Java. The interfaces between the compo-
nents are fully abstract to enable the integration of alternative implementations
of all following subsystems.

Interpreter. This is the heart of the toolkit. It manipulates three abstract,
pluggable interfaces: the heap, type and code models. There is a visual exten-
sion (subclass) of the interpreter with useful tracing and inspection facilities.

Heap Model. The one implementation available so far relies on the hosting
Java garbage collector for memory management. A reference counting im-
plementation using a tagged cyclic algorithm (see [7, 3, 13, 11]) is under de-
velopment.

Type and Code Models. Both a bootstrapping implementation as Java clas-
ses and a heap-based reflexive embedding, suitable for dynamic generative
programming, are available.

Loader. Code can be loaded into the interpreter either by direct access to the
code model’s API, or from textual input by the provided assembler.

2.2 State Space

A state of the V�M comprises:

1. a heap,
2. a stack,
3. a set of function implementations, and
4. a set of constant values

The former two components are obviously dynamic. The latter can be consid-
ered static for most applications. It is possible, however, to use the reflexive type
and code models mentioned in the previous section for dynamic code generation.

Heap. The heap space of the V�M contains the currently allocated memory
cells, which come in several variants:

1. tuples of n field slots,
2. cotuples of a tag symbol and an optional body slot,
3. closures of a function and argument slots (currently not implemented).

Passing data by value means passing a reference to a whole cell, whereas
passing by reference means passing a reference to a slot within a cell.

The V�M provides operations to create cells, and to read, write and reference
slots. For referentially transparent code, writing is supposed to happen exactly
once. Additional memory management primitives will be introduced for use with
the reference counting heap model.

The structure of the data graphs formed by cells and references is specified
by a simple (co)algebraic type system, consisting of the following (potentially
recursive) constructs:
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1. products of either labeled or anonymous (0, 1, 2, . . . ) components,
2. coproducts of constants and parametric variants,
3. higher-order function types (currently not implemented).

The following two type definitions will be used in the further examples of
corecursive functions.

Example 3 (Infinite Digit Sequences). The digits representing a fractional num-
ber (ignoring the position of the decimal point) may be represented by the fol-
lowing recursive product, defining a cofree datatype of infinite streams of integers
(we assume a restriction to the range 0 . . . 9 for the following examples):

type digits == (int , digits)

Note that, in a strict implementation, only finitely representable, i.e., periodic
values (the rational subset of the final coalgebra) are included in the cofree
datatype, which causes exactly the restriction from real to rational numbers (see
[10]).

Note also that, since there is no base case to the type definition,

1. the associated free datatype (with initial algebra semantics) is empty, and
2. a recursive function consuming such a stream digit-wise has infinite recursion

depth for any algebraic evaluation strategy. Only cycle detection enables
termination. ��

Example 4 (Bool). The type of boolean values need not be built into the V�M,
but can be defined as a coproduct of two constants (body-less cotuples):

type bool == false | true ��

Stack. The stack is segmented into a frame for each function incarnation, pro-
viding space for the following data:

1. the identity of the incarnated function,
2. input and output parameters,
3. local variables, and
4. an operand stack for inter-operation data flow.

The V�M provides operations to read, write and reference some of these stack
slots. Input parameters are read-only, whereas output parameters may be writ-
ten or referenced (passed on), but not read. Early writing to output parameters
is essential for the stack-efficient tail-corecursive evaluation of corecursive func-
tions, and for effective cycle detection.

The order of parameters for a nested call on the operand stack is defined as
follows: The output parameters are pushed first, in ascending order, followed by
the input parameters. The inner order of each of the two parameter blocks is
arbitrary and could be reversed without problems, but having input parameters
on top of the stack has some advantages (see figure 2, section 3.2).
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Functions. A function may have m input and n output parameters. Input pa-
rameters are passed by value, output parameters by reference to an uninitialized
memory slot, either a stack slot or a heap cell field. A function may reference
another function by a proper call (always creating a new stack frame), or itself
by a tail call (reusing the most recent stack frame, if safe; see section 3.4).

The passing of result values by output parameters allows every primitively
corecursive function to execute one of its corecursive calls as a tail call, because
they appear as constructor arguments only. For example, if the domain type
of the function is linear, then only tail calls are needed. In the case that the
function arguments are cycle-free, the function will de facto execute as a loop
on constant stack space.

Note that there may be either one or two blocks of code associated with each
function definition (see section 3.1).

Constants. Constants are evaluated eagerly at machine startup time. A con-
stant definition is given as a function with zero input and one output parameter,
which is called with a reference to the (otherwise read-only) constant value slot.

Note that, unlike in other strict, purely functional environments, there is
no problem with (mutually) recursive constants; provided there is a finite-space
corecursive definition (see example 5).

3 Special Features

3.1 Cycle Detection

Strict corecursion is implemented in V�M by standard strict recursion, combined
with the detection of cycles by inspecting the call stack: If a function definition
has a second body (the recycle body), it is capable of cycle handling. Then
perform stack inspection when the function is called. If an enclosing frame for
the same function with identical input parameters is detected, execute the recycle
body instead of the normal one. In the case of primitive corecursion, it consists
of a single ditto operation that copies the output parameters from the enclosing
to the inner frame, yielding a cycle in the output graph.3 Other code may be
useful for cycle handling as well (see [16] and example 6 for further applications).
But some caution must be exercised to prevent the result of a computation from
depending on the details of cycle detection, which would ruin final coalgebraic
semantics.

Example 5 (Trailing Zero). Figure 1 shows the primitively corecursive definition
of an infinite sequence of zeroes, and the corresponding V�M code for both
initialization function bodies.4 ��

Since stack inspection incurs a runtime overhead at least linear in stack depth,
it is worthwhile to

3 ditto is the only operation that may read an output parameter.
4 The tail operation actually creates a new stack frame in this case, see section 3.4.



98 B. Trancón y Widemann

def all0 == (0 , all0 )

recycle ditto

tuple digits // create new tuple cell C, push reference to C
dup // copy reference to C
setparam 0 // write C to output parameter
dup

getconst int0 // push value 0
setfield digits.0 // init first field of C with 0
reffield digits.1 // replace last reference to C by its second field C.1
tail // C.1 becomes corecursive output parameter

ditto // copy output of enclosing incarnation; creates a cycle

Fig. 1. Corecursive Constant Initialization (Example)

1. distinguish between recursive and corecursive function definitions, and ignore
cycles when evaluating the former, and

2. optimize away as many inspections as possible (see section 3.4).

As we already pointed out in [15], cycle detection is completely orthogonal to
memoization. The result of a function incarnation is relevant for cycle detection
only while it is pending, and for memoization only after it has completed. This
orthogonality has two remarkable effects:

1. Both techniques may be combined, with harmless interactions (see [15]).
2. Memoization has to use heap space. Cycle detection, on the other hand, relies

on stack only, and consequently has no memory management penalties.

3.2 In-situ Evaluation

The convention of passing function results by having the callee write to (deref-
erenced) output parameters is different from the most common model of strict
function evaluation, where function results are passed back by value onto the
caller’s operand stack. Because the latter convention is more natural for func-
tion composition, there is an emulation feature called insitu output parameter:

By an insitu operation a stack slot is allocated and initialized with a reference
to itself. This slot behaves like a regular output parameter for the callee, and
like a stack-held result slot for the caller. When the parameter is written to for
the first time, the reference is destroyed. It is therefore safe only in referentially
transparent code.

A subsequent insitu call simply leaves the output parameters on the stack
after the function call. It requires all output parameters to be insitu.

3.3 Control Flow

The only intra-function control flow operation provided by the V�M is a cate-
gorial cotupling construct. It takes a cotuple value off the operand stack, and
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in m-1
...

in 0

out n-1 −→
...

out 0 −→
S

in m-1
...

in 0

out n-1 �
...

out 0 �
S

Fig. 2. Standard and Insitu Calling Convention

branches to a continuation block with matching label. If the cotuple had a body,
that is pushed back onto the operand stack before the continuation is executed.
This operation subsumes if, case, and one-level pattern matching.

Example 6 (Infinite Order). All relevant ordering relations on digits can be
defined by slight variations of the following code, as shown on the right:

def (x, xs) =(a) (y, ys) ==

if x < y then false(b)

if y < x then false

else xs =(a) ys

recycle true(c)

(a) (b) (c)
= false true
≤ true true
< true false

Figure 3 shows the code for =, excluding pattern matching. Assume that values
x , xs, y , ys are in local variables 0 to 3, respectively.

The upper bound for the recursion depth of x = y until the cycle is detected
is in the order of the least common multiple of the period lengths of x and y,
and thus linear in the size of any argument. ��

Note that recycle false yields an inductive predicate, whereas recycle true
yields a coinductive predicate! The complete formalization of these issues is
lengthy, but the essence can be given in a few paragraphs. Consider a predicate
definition in the form of Hilbert-style deduction rules:

A1 · · ·An

B

In the presence of circular data, there coexist two semantics: the inductive (least-
fixpoint) and the coinductive (greatest-fixpoint) semantics. The former yields a
predicate that holds only for the finitely derivable cases, whereas the latter yields
a predicate that holds for all but the finitely refutable cases. The same definition
can be transformed into an equivalent sequent calculus with the standard meta-
rule for axioms:

Δ � A1 · · · Δ � An

Δ � B Δ,A � A



100 B. Trancón y Widemann

Computing the least fixpoint of such a system requires recycle false, because
any cycle yields an infinite and therefore invalid derivation.

insitu // leave space for result of x < y
getvar 0 // push x
getvar 2 // push y
call insitu intLT // test x < y; leave result on the stack
cotupling bool // if x < y
true: // then
cotuple bool.false // push false
setparam 0 // write false to output parameter

false: // else
. . . // repeat with x and y swapped
cotupling bool // if y < x
true: // then
cotuple bool.false // push false
setparam 0 // write false to output parameter

false: // else
refparam 0 // delegate computation of output
getvar 1 // push xs
getvar 3 // push ys
tail

cotuple bool.true // push true
setparam 0 // write true to output parameter

Fig. 3. Digit Sequence Equality

Instead of computing the greatest fixpoint of the same system, we can equiv-
alently compute the least fixpoint of a cycle-detecting system, where the conclu-
sion B of each rule is added to the axioms of its premises Ai, which corresponds
exactly to recycle true:

Δ,B � A1 · · · Δ,B � An

Δ � B

This kind of cycle detection and handling is not new; it has been used for
decades for implementing numerous variants of graph traversal.

3.4 Optimized Cycle Detection

The overhead incurred by inspecting the whole call stack on every function call
is too high for any serious implementation. In [15], we presented a number of
substantial optimizations. They are based on a heap invariant that requires every
cycle in memory to contain at least one tagged edge (but as few as possible). In
purely functional code, cycles may only be caused by ditto operations, there-
fore tagging exactly the ditto edges is a safe and simple strategy. We have
also argued in [15] that the resulting tag placement is minimal and optimal for
subsequent traversal.



V�M: A Virtual Machine for Strict Evaluation of (Co)Recursive Functions 101

In a lazy setting, the usefulness of a corecursive definition is determined by
its productivity: Every finite evaluation depth of the result must be reachable
in finite time (for a formalization, see [14]). Primitive corecursion is productive
by construction. This fact has been exploited, e.g., for the strong termination
properties of Charity.

In a strict setting, there is the additional requirement that cycle detection
be effective and efficient. We shall call a function consumptive, if its corecursive
input parameters are either constant or obtained by following references, i.e.,
the function does not call itself on newly created objects. If the function fulfills
the stronger property that its corecursive input parameters are obtained by
following exactly one reference edge, then it is called thoroughly consumptive.
The class of thoroughly consumptive functions comprises all catamorphisms and
their extensions to cofree domain types. The following examples will demonstrate
that many practical function definitions belong to this class.

For thoroughly consumptive functions, the overhead of cycle detection can
be reduced greatly: If all parameters of such a corecursive call are untagged
edges, then stack inspection can be omitted for this call, without compromising
termination: If there is a cycle, then it will eventually be reached by traversal of
a tagged edge.

The same optimization approach also makes tail call elimination possible: If
any parameter of a call to a thoroughly consumptive function refers to a cell
that is not pointed to by any tagged edge, then this incarnation will never be
subject to (successful) cycle detection, and the corresponding stack frame can
be reused immediately.

Note that both optimizations always apply to all cells of cycle-free data (free
terms). Consider, e.g., the domain of finite lists. Any function that is a catamor-
phism on this domain and an anamorphism on its codomain5 will execute as a
true loop.

Example 7 (Normalizing Digits). The inherent redundancy of the decimal rep-
resentation (e.g., 099 . . . = 100 . . . ) can be eliminated by the following normal-
ization function:

def norm(x, xs) ==
if x = 0 then (x ,norm xs)
else if xs = all0 then (x − 1 , all9 )
else (x ,norm xs)

recycle ditto

The corecursion norm(x, xs) � (x, norm xs) is thoroughly consumptive. There-
fore, all stack frames except the one for the first periodical digit can be omitted.
See figure 4 for the V�M code corresponding to (x, norm xs). ��

5 This includes map, length, and many others; but not filter .



102 B. Trancón y Widemann

tuple digits // create new tuple cell C, push C
dup

setparam 0 // write C to output parameter
dup

getvar 0 // push x
setfield digits.0 // write x to field C.0
reffield digits.1 // obtain reference to field C.1
getvar 1 // push xs
tail // corecursively write (norm xs) to C.1

Fig. 4. Tail Corecursion (Example)

4 Advanced Application: Arithmetics

4.1 Subtraction

Infinite precision arithmetics exhibit quite tricky data flow: Because computation
has to progress left-to-right (there is no right end to start with), carry digits
have to propagate at least one step back in time. [8] developed an intricate lazy
computation scheme to “borrow carry digits from the future”, or rather have
lazy evaluation of the carry sequence probe ahead as needed (incurring some
caveats and pathological cases where nothing useful happens).

The following diagram illustrates the situation x−y = z, where c is the carry
sequence:

x1 x2 x3 x4 x5 . . .
− y1 y2 y3 y4 y5 . . .

c1 c2 c3 c4 c5 ...

= z1 z2 z3 z4 z5 . . .
−−−→ t

In a strict setting, where we can easily rewind to the left end after the com-
putation, things are much easier. We start with digit-wise half-subtraction:

x1 x2 x3 x4 x5 . . .
− y1 y2 y3 y4 y5 . . .
= z′1 z′2 z′3 z′4 z′5 z′i = (xi − yi) mod 10

c′1 c′2 c′3 c′4 c′5 c′i = (xi − yi) div 10

Example 8 (Half-Subtraction). The following function computes one digit of lo-
cal result and local carry value on each corecursive call:

def subaux
(
(x, xs), (y, ys)

)
==

let z ′ == x − y
(zs ′, cs ′) == subaux (xs, ys)

in if 0 ≤ z ′ then
(
(z ′, zs ′), (0 , cs ′)

)
else

(
(z ′ + 10 , zs ′), (1 , cs ′)

)
recycle ditto
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let (zs ′, cs ′) == subaux (xs, ys) in
(
(z ′, zs ′), (0 , cs ′)

)
tuple digits // create new tuple cell C, push C
dup

setparam 0 // write C to first output parameter
dup

getvar 4 // push z′

setfield digits.0 // write z′ to field C.0
reffield digits.1 // obtain reference to field C.1

tuple digits // create new tuple cell D, push D
dup

setparam 1 // write D to second output parameter
dup

getconst int0 // push value 0
setfield digits.0 // write 0 to field D.0
reffield digits.1 // obtain reference to field D.1

getvar 1 // push xs
getvar 3 // push ys
tail // corecursively write subaux(xs, ys) to (C.1, D.1)

Fig. 5. Half-Subtraction (Excerpt)

This definition is thoroughly consumptive and can be transformed into tail-
corecursion by distributing the second let-equation. Figure 5 gives the code for
the first branch. ��

If underflow is excluded, then c′1 = 0. One step of carry propagation is
performed by iterated subtraction z′ − c̄ (where c′ = c′1c̄). Eventually, when
c′ = 00 . . . , a fixpoint is reached and z′ = z. Because each digit can underflow
at most once, this process converges in a finite number of iteration steps. The
same bounds as for the relations (see example 6) apply.

Example 9 (Subtraction).

def x − y ==
if y = all0 then x

else let
(
z ′, ( , c′)

)
== subaux (x , y)

in z′ − c′

Note that this definition has no recycle block, since it is recursive, not corecursive.
��

4.2 Addition and Multiplication

With subtraction given, addition can be implemented immediately via the equa-
tion x+y = x− (0−y). A more efficient algorithm can be obtained by dualising
the subtraction algorithm.
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The relation of multiplication and division is not equally symmetric: division
subsumes multiplication by x ∗ y = x/(1/y), but it is not obvious how to come
up with a corecursive multiplication algorithm. In the next section, we will show
that division is conceptually more straightforward, yet exhibits some technically
interesting problems.

4.3 Division

Example 10 (Iterated Subtraction). The heart of the division algorithm is a re-
cursive function that performs iterated subtraction, and thus computes the first
digit of the quotient and the complete remainder.

def divaux(xs, ys) ==
if xs < ys then (0 , xs)
else let (z , xs ′) == divaux (xs − ys, ys)

in (z + 1, xs′)

��

Example 11 (Näıve Division). The process is then iterated by dividing through
the tenth part of the remainder to obtain the next digit, and so on until a cycle
is detected.

def x/y ==
let (z , r) == divaux (x , y)

in
(
z, r/(0, y)

)
recycle ditto

Unfortunately, this function is not likely to terminate! An obvious hint of the
problem is the constructor call (0, y) occurring as corecursion argument. It may
yield a fresh object on every call, and thus will not result in a cycle. The actual
problem is of even more general nature; see the next section for a detailed ex-
planation. ��

5 Quasicycles

As in every Turing-complete computation formalism, there are both plain and
subtle causes for non-termination. In order to reason about termination of strict
corecursive functions, one must keep in mind that the implementation is often
an approximation.

The semantics of corecursion are defined in terms of a final coalgebra. The
heap of a machine with cells and references naturally is a coalgebra, but clearly
a non-final one: the duplication of bisimilar (structurally equivalent) objects is
generally perfectly legal. There are environments that employ a technique called
hash-consing for algebraic terms to maintain uniqueness, but this pays off only
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in special applications (see [17]). Besides, bisimilarity is more effort to decide
than algebraic equivalence (see [1] and example 6).6 For efficiency reasons, the
uniqueness of constructed objects should therefore not be relied upon.

In this setting, it is possible for the specification of a function (working on
a final coalgebra) to corecur in a finite graph of objects, while the implemen-
tation (working on a non-final coalgebra) results in traversal of a dynamically
expanding, infinite graph:

A B

D C

�


�
�

A → B → C → D → A → B → · · ·

In general, unification of bisimilar objects is impossible a priori (because of the
late initialization of fields) and infeasible a posteriori (because of the relatively
high cost for comparing and hashing cyclic data). Instead, we have chosen to
provide an alternative technique of cycle detection. For a function marked as
quasicyclical, the matching of enclosing stack frames is not exact, but modulo
bisimilarity. Runtimes for calls to this function are increased (where the inspec-
tion phase cannot be optimized away), but not for other parts of the program.
This way, the gap between theory and practice can be closed.

Example 12 (Corrected Division). The cancellation of 0xs/0ys to xs/ys is suffi-
cient to detect the period of the quotient modulo bisimilarity.

def (x, xs)/(y, ys) ==
if x = 0 ∧ y = 0 then xs/ys

else let (z , r) == divaux
(
(x , xs), (y , ys)

)
in

(
z, r/(0, (y, ys))

)
recycle quasi ditto

��

6 Conclusion

We have outlined the architectural design of the V�M, a virtual machine for strict
function evaluation that supports corecursion by a small set of special primitives.
Its operation principles have been introduced and motivated by examples from
the domain of infinite precision decimal arithmetics.

The working implementation of the V�M core components, including a GUI
visualization of the interpreter, and some example programs, are available from
http://uebb.cs.tu-berlin.de/v2m.

6 Surprisingly, bisimilarity is not as hard as general graph isomorphy, and requires
linear time.
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6.1 Related Work

The correspondences with and differences from related designs have been stated
in various sections of this paper. To summarize: the design of V�M and its satellite
formalisms is an attempt to combine the elegance and symmetry of coalgebra-
enabled systems, such as Charity, with the elaborate and interoperation-friendly
implementation techniques for strict languages (see, e.g. [2]). The examples that
govern the structure of this paper have been inspired by philosophical works on
numbers and computational (co)algebra, most notably [8, 10].

6.2 Future Work

Many typical components of virtual machine platform toolkits remain to be
implemented:

Front-End Compilers. A fully formal extension of the functional pseudocode
used in this paper is currently under development as the primary front-end
language for V�M.

Also, a major subset of Charity (excluding only truly infinite data) could be
compiled to V�M. We would be most interested in a comparing evaluation of the
two platforms.

Back-End Compilers. Both offline compilation to some other platform and
just-in-time compilation in order to speed up the interpreter would be useful
tools for creating real applications in V�M code.

Just-in-time compilation is not very attractive for the Java-based interpreter,
however, because the Java VM lacks primitives for referencing subfields of objects
in memory as required by V�M.

An offline translation to C and subsequent compilation with an optimizing C
compiler, on the other hand, seems a promising strategy for obtaining competi-
tive performance of V�M programs with moderate effort.

The verification of code integrity and static type safety is a standard prob-
lem of program analysis, much simplified in the V�M context by the rigidly
restricted control flow. A more challenging task is the verification of referential
transparency, as required by a purely functional front-end language.

We envision that an axiomatic specification for this verification process might
also serve as a contribution to the formalization of the (somewhat fuzzy) notion
of referential transparency itself.
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Abstract. We describe the architecture of a virtual machine for executing func-
tional logic programming languages. A distinguishing feature of our machine is
that it preserves the operational completeness of non-deterministic programs by
concurrently executing a pool of independent computations. Each computation
executes only root-needed sequential narrowing steps. We describe the machine’s
architecture and instruction set, and show how to compile overlapping inductively
sequential programs to sequences of machine instructions. The machine has been
implemented in Java and in Standard ML.

1 Introduction

Functional logic programming aims at integrating the characteristic features of func-
tional and logic programming into a single paradigm. In the last decade, the theory of
functional logic computations has made substantial progress. Significant milestones in-
clude a model that integrates narrowing and residuation [13], narrowing strategies for
several classes of programs suitable for functional logic languages [5], a functional-like
model for non-deterministic computations [3], and well-defined semantics for program-
ming languages of this kind [1, 11].

These results have been influential in the design and implementations of functional
logic programming languages, e.g., Curry [18] and T OY [19]. Most existing imple-
mentations of these languages are based on a translation of source code to Prolog code
(e.g., [7]), which can be executed by existing standard Prolog engines. This approach
simplifies the task of implementing functional logic language features: e.g., source lan-
guage variables can be implemented by Prolog variables and narrowing can be simu-
lated by resolution. But some problems arise; most notably, the depth-first evaluation
strategy of the Prolog system causes the loss of the operational completeness of func-
tional logic computations and inhibits the implementation of advanced search strategies
[17].
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This paper describes a fundamentally different approach to the implementation of
a functional logic language, namely a virtual machine for functional logic computa-
tions. Section 2 sketches the key features of functional logic languages. Section 3 de-
scribes the architecture of the virtual machine. In particular, we describe how functional
logic features influence several key decisions, e.g., non-determinism and the desire for
operational completeness suggest an architecture that executes a pool of independent
computations concurrently. We describe the kind of steps executed by each computa-
tion in the pool. By choosing a specific class of source programs, we can arrange that
the machine only needs to execute root-needed steps sequentially, a characteristic that
promotes both simplicity and efficiency. We describe the registers of the machine, the
information they contain, and how the machine instructions control the flow of infor-
mation between these registers. Finally, we sketch how a program can be compiled into
machine instructions. Examples are provided throughout the discussion. Section 4 de-
scribes on-going efforts at implementing the virtual machine in both Java and Standard
ML. The Java implementation, which is the more highly developed, is mainly intended
as a compiler/interpreter for Curry, but it could be used to interpret compiled functional
logic programs coded in other languages. Section 5 contains the conclusion and a brief
discussion of related work.

2 Functional Logic Computations

Functional logic computations generalize functional computations by adding three spe-
cific features: non-determinism, narrowing and residuation (see [12] for a survey). Our
machine is not designed for a specific programming language. The examples in this pa-
per are in Curry, but the details of the source language are largely irrelevant. Our only
assumption is that source programs can be converted to a particular variety of first-order
term rewriting systems. The requirements on these rewriting systems are described in
more detail below.

2.1 Functional Logic Features

Non-determinism is the feature that allows an expression to have multiple distinct val-
ues. Non-determinism broadens the class of programs that can be coded using func-
tional composition [3]. For example, a program that solves a cryptarithm must assign
digits to each letters. This can be expressed as “let s = digit in...” where digit
is defined by the rules

digit = 0
digit = 1
...
digit = 9

(1)

The rules of digit are not mutually exclusive, i.e., the expression digit has 10 dis-
tinct values. The value eventually chosen for a given letter is constrained, according
to a cryptarithm, by some other part of the program. All the rewrite rules of function
digit have the same left-hand side. (In Sections 3.6 and 3.7, we will consider these 10
rules as a single rule where the right-hand side is non-deterministically chosen among
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10 possibilities. A justification of this viewpoint and the opportunity to exploit it for an
efficient evaluation strategy are in [3].)

Narrowing is the glue between functional and logic computations. The execution of
a functional logic program may lead to the evaluation of an expression containing an
uninstantiated variable. Narrowing “guesses” a value for the variable when this is nec-
essary to keep the computation going. For example, the function that returns the last
element of a list can be coded as follows (“++” is the list concatenation function):

last l | l =:= x++[e] = e where x,e free (2)

The evaluation of last [1,2,3] prompts the evaluation of [1,2,3] =:= x++[e], the
rule’s condition (e1 =:= e2 denotes the equality constraint that is satisfied if e1 and e2

are evaluable to unifiable data terms). The variables x and e are uninstantiated. Nar-
rowing finds values for these variables that satisfy the condition; this is all it takes to
compute the last element of the input list.

Residuation is an alternative mechanism for handling evaluation of an expression con-
taining an uninstantiated variable. In this case, the evaluation suspends, and control is
transferred to the evaluation of another expression in hopes that the latter will instantiate
the variable so that the former can resume execution. (Evidently this only makes sense
when more than one subexpression is available to be evaluated, e.g., the conjuncts of
a “parallel and” operation.) The decision of whether to narrow or residuate is specified
by the programmer on a per-function basis. Generally, primitive arithmetic operations
and I/O functions residuate, since it seems impractical to guess values in these cases,
whereas most other functions narrow.

2.2 Overlapping Inductively Sequential Rewrite Systems

Our abstract machine is intended to evaluate programs that can be expressed as overlap-
ping inductively sequential term rewriting systems [3]. Roughly speaking, this means
that pattern matching can be represented by (nested) case expressions with multiple
right-hand sides for a single pattern. More precisely, every function of an overlapping
inductively sequential system can be represented by a particular variety of definitional
tree [2, 3], which we specify in Section 3.7.

It is shown in [4] that every functional logic program defined by constructor-based
rewrite rules, including programs in the functional logic languages Curry and T OY ,
can be transformed into an overlapping inductively sequential system. This class prop-
erly includes the first-order programs of the functional languages ML and Haskell.
Higher-order features, i.e., applications of a functional expression to an argument, can
be represented as an application of a specific first-order function apply (where partial
applications are considered as data terms)—a standard technique to extend first-order
languages with higher-order features [23]. (Additional preliminary compiler transfor-
mations, e.g., name resolution, lambda lifting, etc., are typically needed to turn source
programs into rewrite system form; we do not discuss these further here.)
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3 Virtual Machine

In this section we describe how the features of functional logic computations, in par-
ticular non-determinism and narrowing, shape the architecture of our virtual machine.
We only sketch the machine’s support for residuation; full details of this are beyond the
scope of this paper.

3.1 Pool of Computations

A fundamental aspect of functional logic computations is non-determinism—both in
its ordinary form, as in example (1), and through narrowing, as in example (2). The
execution of a non-deterministic step involves one of several choices in the replacement
of a redex—or, to use a more appropriate term in our environment, a narrex. (In the
remainder of the paper, we use “narrowing” to refer to either narrowing or rewriting,
which is a special case of narrowing.) For example, in the cryptarithm solver mentioned
earlier, the evaluation of digit leads to 10 possible replacements.

One of our main goals is to ensure the operational completeness of computations.
For instance, consider the following function to reverse the elements in a list:

rev (x:xs) = rev xs ++ [x]
rev [] = []

(3)

A complete computation mechanism will be able to compute a solution to the equation
rev l =:= [1,2], namely {l=[2,1]}. A conventional backtracking policy that tries
each clause of rev in order will loop forever on the first clause, and hence is not com-
plete. The simplest policy to ensure completeness is to execute any non-deterministic
choice fairly, independently of the other choices. In our virtual machine, this is achieved
by concurrently computing the outcome of each replacement. In our machine, a compu-
tation is explicitly represented by a data structure, which holds the term being evaluated,
a substitution, and a state indicator with values such as active, complete, or residuating.

The machine maintains a pool of computations. Initially, there is only one active
computation in the pool, containing the initial base term. Computations change state
depending on events or conditions resulting from the execution of machine instructions.
For example, when a computation makes a non-deterministic step, the computation is
abandoned; new computations, one for each possible step, are created, added to the
pool, and become active. When a computation obtains a normal form or a head normal
form (we have a different kind of computation for each task), the computation state is
set to complete.

The core of the machine is an engine to perform head normal form computations,
by executing sequences of machine instructions. There is one such sequence associated
with each function of the source program, which we call the code of the function. The
purpose of a function’s code is to perform a narrowing step of an application of the
function to a set of arguments, or to create the conditions that lead to a narrowing
step (details are given in Section 3.3). The instructions operate on an internal context
consisting of several registers and stacks (described in Section 3.5). The instruction
sequence is always statically bounded in length, and contains no loops. For the simplest
functions, it is just a few instructions long. For more complicated functions, the number
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of instructions goes up to a few dozen, but seldom more than that. When the virtual
machine completes the execution of a function’s code, most of the context information
become irrelevant.

To manage the pool of computations fairly, the machine must share the processor
among active computations so that they make some “progress” toward a result over
time. We considered several strategies to ensure fair sharing. For example, a fixed
amount of time could be allocated to each computation. If a computation C ends be-
fore the expiration of its time, a different computation is executed. Otherwise, C is
interrupted. When all the other computations existing in the pool at the time of the
interruption of C have received their fair share of time, the execution of C resumes.
A similar strategy would be to allocate a fixed number of virtual machine instruc-
tions.

A drawback of the above strategies is that when a computation is interrupted, the
instruction execution context must be saved, and subsequently restored when the com-
putation resumes. In order to minimize the overhead of switching contexts, we have
adopted a simpler strategy that never interrupts instruction sequences. This remains fair
because the length of each instruction sequence is bounded. When the machine selects
a computation from the pool, it executes the entire code of some function for that com-
putation, and then returns the computation to the pool. It then repeats this process fairly
for every other computation of the pool.

3.2 Terms and Computations

In the model for functional logic programming described in [13], a computation is
the process of evaluating an expression by narrowing. The expression is a term of the
rewrite system modeling the program. A term t is a variable v or a symbol s of fixed
arity n � 0 applied to m terms t1, . . . , tm, m ≤ n, written as s(t1, . . . , tm). Sym-
bols are partitioned into data constructors c and functions or operations f . A data term
is a term without defined functions, a pattern is a function applied to data terms, and
a head normal form is a term without a defined function at the root, i.e., a variable
or a constructor-rooted term. In examples, we often write terms using infix notation
for symbols. A position pos in a term is represented by a sequence of positive inte-
gers representing subterm choices, beginning at the root. For example, the position of
x in f(y,b(x,z)) is the sequence 2·1. We write t|pos for the subterm at position pos
in t.

Evaluating a term results in both a computed value, as in functional programming,
and a computed answer, as in logic programming. The computed value is a data term,
and the computed answer is a substitution, possibly the identity, from some free vari-
ables of the term being evaluated to data terms. In Example (2), the evaluation of
[1,2,3] =:= x++[e] returns the computed value Success, a predefined constant for
constraints, and the computed answer {x �→ [1,2], e �→ 3}.

Thus, the state of a computation includes both a term and a substitution. Initially,
the computation data structure for a term t holds t itself and the identity substitution.
As narrowing steps are executed, both the term and the substitution fields of the com-
putation structure are updated. A computation is complete when the machine cannot
perform a step in the term being evaluated.
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The machine supports three kinds of computations. Normal form computations
attempt to narrow terms all the way to data terms. The virtual machine is intended to
be used within a host program that provides the read-eval-print loop typical of many
functional and logic interpreters. The host program provides the initial base term for
the machine to evaluate to normal form, and waits for the computed values and answers
to be returned (if the program narrows variables or executes non-deterministic steps,
multiple value/answer results are possible).

Head normal form computations try to evaluate terms to constructor-rooted terms
or variables. Executing these computations is the core activity of the machine, during
which the definitions of functions are applied. Since normal form computations can be
modeled by head normal form computations using auxiliary operations (see, e.g., [15]),
we concentrate on head normal form computations in this paper; they are described in
more detail in Section 3.3.

Parallel-and computations handle the evaluation of a conjunction of two terms.
Residuation is only meaningful in the presence of these computations. Each conjunct is
evaluated by a different computation. For each conjunction, the computation of one and
only one of the two conjuncts is active at any one time (implementing an interleaving
semantics for concurrency [13]). If the computation of the first conjunct residuates, the
computation of the second one becomes active. The second computation may “unblock”
the first one, thus becoming waiting itself, or may residuate as well. In this case, the en-
tire computation blocks. If all the parallel-and computations derived from a given base
term are blocked, the base term computation flounders. Since we are omitting details
of residuation support in this paper, we ignore parallel-and computations in subsequent
sections.

The computations in the machine’s pool are conceptually independent of each other.
In our implementation, the evaluation of some subterms common to two independent
computations may be shared, but this is only for the sake of efficiency. Thus, we de-
scribe the execution of a computation disregarding the fact that other computations
may be present in the pool.

3.3 Head Normal Form Computations

The execution of a head normal form computation attempts to rewrite an operation-
rooted term into a constructor-rooted term or variable. The evaluation strategy executed
by our machine is root-needed reduction [21] with the addition of narrowing and non-
deterministic steps. Simply put, the strategy repeatedly attempts to apply rewrite rules
at the top of an operation-rooted term until a constructor-rooted term or variable is
obtained.

The implementation of this strategy for a given function depends only on the forms
of the left-hand sides of that function’s defining rules. In fact, the definitional trees
that our system uses to represent programs already implicitly encode the strategy. The
next needed step in the evaluation of a term f(t1, . . . , tn) can be obtained by compar-
ing the symbols at certain positions in the arguments of f with corresponding symbols
in f ’s definitional tree. A sequence of comparisons determines which rule to apply,
or which subterm to evaluate. To implement these tree-based operations, we compile
the definitional tree for each function f to a code sequence of virtual machine in-
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structions, as described in Section 3.7. The instructions themselves are described in
Section 3.6.

The code for a function effectively chooses which rule to apply to a term. But it is
also possible that no rule can be applied at the top of an operation-rooted term. This can
occur for one of only two reasons: (1) an operation-rooted argument of a function appli-
cation must be evaluated to a head normal form before any rule can be applied, or (2) the
function is incompletely defined. An example of each condition follows. Consider the
definitions of the usual functions that compute the head of a list and the concatenation
of lists, denoted by the infix operator “++”.

head (x:_) = x

[] ++ y = y
(x:xs) ++ y = x : xs ++ y

(4)

The term t = head (u ++ v), for any u and v, is an example of the first condition.
To evaluate t, it is necessary to evaluate (u ++ v) which is a recursive instance of the
original problem, i.e., to evaluate an operation-rooted term to a head normal form.

The term t = head [] is an example of the second condition. In a deterministic lan-
guage, where the execution of a program consists of a single computation, this condition
is usually treated as an error. In a non-deterministic language, where the execution of
a program may consist of several independent computations, this condition is often be-
nign. The machine uses a distinguished symbol, which we denote by fail, to replace
terms that have no value. Since for every computation of the pool the machine executes
exclusively needed steps, the reduction of any subterm to fail implies that the entire
computation should fail.

3.4 Data Representation

We now describe the virtual machine more formally. The terms manipulated by the
machine are represented by acyclic directed graphs stored in heaps. This graph-based
representation of terms is necessary to capture the intended sharing semantics of the
language, and also allows us to express important optimizations when manipulating
and replacing subterms. Formally, a heap is a finite map Γ : H → P + V , where
H is an abstract set of handles (e.g., heap addresses), P is a set of pairs of the form
〈s, (h1, . . . , hn)〉, where s is a program symbol of arity m � 0, n � m, and h1, . . . , hn

are handles, and V is a set of program variables v. (We distinguish elements of P from
those of V by always writing the former using pair notation.) The term represented by
handle h in heap Γ is given by

trmΓ (h) =
{

s(trmΓ (h1), . . . , trmΓ (hn)) if Γ (h) = 〈s, (h1, . . . , hn)〉
v if Γ (h) = v

We make extensive use of finite maps in what follows, so we fix some general notation
for these here. If M is a finite map, then M [u := v] is the result of extending or updating
M with a mapping from u to v. We write ∅ for an empty map, and [u := v] as shorthand
for the singleton map ∅[u := v]. We write Dom(M) for the domain of M .
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The storage areas of the machine (described in Section 3.5) hold handles for terms;
more loosely, we sometimes just say they hold terms and we extend some standard term
rewriting notations to handles. For example, if h is handle and p = p1 · p2 · · · pn is a
position, then we define

h|p1···pn
= hp1 |p2···pn

where Γ (h) = 〈 , (h1, . . . , hn)〉

It follows immediately that trmΓ (h|p) = trmΓ (h)|p. We also define the set of subhan-
dles of a handle in the obvious way:

shsΓ (h) =
{
{h} ∪ shsΓ (h1) ∪ . . . ∪ shsΓ (hn) if Γ (h) = 〈s, (h1, . . . , hn)〉
{h} if Γ (h) = v

For any handle h, the terms represented by the handles in shsΓ (h) are just the subterms
of trmΓ (h).

Substitutions σ are finite maps from handles to handles, where the handles of the
domain typically (but not necessarily) represent variables. Substitutions are never ap-
plied destructively to change a term in-place, since different computations might need
to apply different substitutions to a same term. Instead, they are applied to handles rep-
resenting terms by making a clone (deep copy) of the term. More precisely, we define a
“clone with substitution” operator as follows:

cloneσ(Γ0, h) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Γ0, σ(h)) if h ∈ Dom(σ)
(Γ0, h) if shsΓ (h) ∩Dom(σ) = ∅
(Γ ′, h′) otherwise, where

Γ0(h) = 〈s, (h1, . . . , hn)〉
(Γi, h

′
i) = cloneσ(Γi−1, hi) (1 ≤ i ≤ n)

Γ ′ = Γn[h′ := 〈s, (h′
1, . . . , h

′
n)〉] (h′ �∈ Dom(Γn))

This clone operator is quite efficient since it copies (only) the spines of the term above
any substituted variables; any parts of the source term remaining unaffected by the sub-
stitution are shared by the result term. For cloning to have the expected substitution se-
mantics on the represented terms, it is important that no variable appears more than once
in the heap; i.e., if trmΓ (h1) = v and trmΓ (h2) = v, then h1 = h2. We call heaps hav-
ing this property well-formed, and we take care to start the machine with a well-formed
heap and maintain the well-formedness invariant during execution. Suppose Γ is well-
formed, trmΓ (h) = t and trmΓ (j) = u for some terms t and u, and trmΓ (k) = v
for some variable v. If (Γ ′, h′) = clone[k:=j](Γ, h), then trmΓ ′(h′) = t[u/v], i.e., the
usual term substitution of u for v in t.

3.5 Storage Areas

As discussed in the previous sections, our machine fairly executes a pool of indepen-
dent computations. The context of each computation includes a heap and four separate
storage areas, a generic name for stacks and registers.

Suppose that t is the term to evaluate in a head normal form computation. We recall
that initially t is operation-rooted; the computation completes successfully when t is
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evaluated to a constructor-rooted term or variable. The computation begins by execut-
ing the code associated with the function at the root of t. In the course of executing
this code, it may become necessary to recursively evaluate operation-rooted subterms
of t. The pre-narrex stack keeps track of these recursive computations. It is a stack
containing handles hn, . . . , h2, h1 of a heap Γ , with hn the top, having the following
properties.

1. At the beginning of the computation, n = 1 and trmΓ (h1) = t.
2. Every term represented by a handle in the stack, with the possible exception of hn,

the top of the stack, is operation-rooted and it is not a narrex.
3. For all i > 1, hi is a subhandle of hi−1 with the property that trmΓ (hi) must be

evaluated to a head normal form before trmΓ (hi−1) can be evaluated to a head
normal form.

The top of the pre-narrex stack contains the term handle currently being evaluated.
Referring to example (4), if head (u ++ v) is on the pre-narrex stack, then u ++ v will
be pushed on the stack, too, because the former cannot be evaluated to a head normal
form unless the latter is evaluated to a head normal form. The machine allocates a
separate pre-narrex stack to each head normal form computation.

The other three storage areas are local to the execution of a single function code
sequence.

Current Register. This is a simple register containing a term handle. Many of the
machine’s instructions implicitly reference this register. For example, to apply a rewrite
rule of the function “++” defined in (4) to the term u ++ v, one must check whether the
term u is rooted by [] or “:” or some function symbol. The BRANCH instruction that
performs the test expects to find the term to be tested in the current register.

Pre-term Stack. This is a stack for constructing narrex replacements. These are always
term handles instantiating a right-hand side of a rule. The arguments of a symbol ap-
plication are first pushed on the stack in reverse order. The MAKETERM instruction,
which is parameterized by the symbol being applied, replaces these arguments with
the application term. For example, the term [1,2]++[3,4], which is a narrex, is re-
placed by 1:([2]++[3,4]) which is constructed as follows. First, the handles for the
terms [3,4] and [2] are pushed on the pre-term stack. Executing “MAKETERM ++”
replaces them with a handle to the new term [2]++[3,4]. Then, the handle for the
term 1 is pushed on the stack as well and executing “MAKETERM :” replaces the two
topmost elements with a handle for 1:([2]++[3,4]).

Free variable registers. The rewrite rules that define the functions of the program
can contain free (extra) variables. Several occurrences of a same free variable may be
needed to construct the narrex replacement. Therefore, when a free variable is created,
its handle is stored in a register (using instruction STOREVAR) to be retrieved later
(using instruction MAKEVAR) if it occurs again. For example, consider the following
rule that tells whether a string of odd length is a palindrome:

palind s = s =:= x ++ (y : reverse x) where x,y free (5)
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The construction of an instance of the right-side of this rule begins with pushing x, for
the right-most occurrence of the right-hand side, on the pre-term stack. Later on, an-
other occurrence of x is to be pushed on the stack. Thus, a handle to x must be kept
around so that it can be retrieved later and pushed again. The machine maintains the
set of free variables as a finite map from variable index numbers (which are parame-
ters to the STOREVAR and MAKEVAR instructions) to variable handles. The content
of these local storage areas can be discarded at the end of the execution of the func-
tion code. Since computations are never interrupted in the middle of an instruction
sequence, there need only be one instance of these areas, which can be shared by all
computations.

3.6 Machine Instructions

The virtual machine evaluates terms by executing sequences of instructions. Each in-
struction acts on the heap and the current computation to produces a (possibly) altered
heap and zero or more new or changed computations. Thus, the behavior of a computa-
tion C in the current heap Γ will be specified as a transition Γ,C =⇒ Γ ′, {C1, . . . , Cn}
(n ≥ 0) where Γ ′ is a modified heap and C1, . . . , Cn are the new or changed compu-
tations. Some instructions move information between the various storage areas. Others
build or take apart terms. Building a term extends the heap; some other operations up-
date it. Figure 1 gives transition rules for the instructions.

The machine begins a head normal form evaluation with a single active computa-
tion, containing a single term handle on the pre-narrex stack, and a well-formed heap.
(The information in all the other storage areas is irrelevant.) The machine then repeats
the following cycle. A computation is chosen (fairly) for execution from the active com-
putation pool. If the top of the pre-narrex stack represents an operation-rooted term, the
machine retrieves the code for the operation and begins to execute it. If the top of the
pre-narrex stack represents a constructor-rooted term or a variable, the stack is simply
popped; in this case an appropriate handle in the heap will already have been updated
with that term. If the pre-narrex stack is empty, the computation is completed and is
removed from the pool of active computations; the computed value can be read from
the heap by the host program.

The code for a function is a sequence of instructions I . (In fact, because BRANCH

instructions may contain multiple sub-sequences of instructions, the code really forms
a tree.) The LOAD and BRANCH instructions deal with fetching and testing (handles
of) existing terms. LOAD p extracts the subhandle at position p from the handle on top
of the pre-narrex stack and puts it in the current register. BRANCH I0, . . . , In tests and
dispatches on the form of the term represented by the handle in the current register.
If the head of this term is a function symbol, the term is pushed on the pre-narrex
stack to be eventually narrowed to a head normal form. If it is the special constant
fail, the current computation is abandoned (see below). If it is a logic variable, control
is dispatched to the instruction sub-sequence I0, which ordinarily arranges to narrow
or residuate. Otherwise, the term must be rooted by some constructor c from some
datatype t; control is dispatched to instruction sequence Ij , where j is the index of c in
the canonical ordering of constructors for t. Note that BRANCH can only occur at the
end of an instruction sequence.
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Γ, ([], h:N, , , ) =⇒ Γ, {(code(f), h:N, , [], ∅)}
(Γ (h) = 〈f, 〉)

Γ, ([], h:N, , , ) =⇒ Γ, {([], N, , [], [])}
(Γ (h) = 〈c, 〉 or Γ (h) = v)

Γ, ([], [], , , ) =⇒ Γ, ∅
Γ, (LOAD p1 · · · pn : I, [tm, . . . , t1], , T, F ) =⇒ Γ, {(I, [tm, . . . , t1], tm|p1···pn , T, F )}

Γ, (BRANCH . . . : [], N, h, , ) =⇒ Γ, {([], h:N, , [], ∅)} (Γ (h) = 〈f, 〉)
Γ, (BRANCH . . . : [], , h, , ) =⇒ Γ, ∅ (Γ (h) = 〈fail, ()〉)

Γ, (BRANCH I0, . . . : [], N, h, T, F ) =⇒ Γ, {(I0, N, h, T, F )} (Γ (h) = v)

Γ, (BRANCH I0, . . . , In : [], N, h, T, F ) =⇒ Γ, {(Ij , N, h, T, F )}
(Γ (h) = 〈c, 〉, c j-th constructor)

Γ, (PUSH : I, N, R, T, F ) =⇒ Γ, {(I, N, R, R:T, F )}
Γ, (POP : I, N, , t:ts, F ) =⇒ Γ, {(I, N, t, ts, F )}

Γ, (MAKEANON : I, N, R, T, F ) =⇒ Γ [h := v], {(I, N, R, h:T, F )}
(h �∈ Dom(Γ ), v fresh)

Γ, (STOREVAR n : I, N, R, T, F ) =⇒ Γ [h := v], {(I, N, R, T, F [n := h])}
(h �∈ Dom(Γ ), v fresh)

Γ, (MAKEVAR n : I, N, R, T, F ) =⇒ Γ, {(I, N, R, F (n):T, F )}
Γ, (MAKETERM s : I, N, R, [tm, . . . , t1], F ) =⇒

Γ [h := s(tm, . . . , tm−n+1)], {(I, N, R, [h, tm−n, . . . , t1], F )}
(h �∈ Dom(Γ ), arity(s) = n � m)

Γ, (REPLACE : [], h:N, R, [], ) =⇒ Γ [h := R], {([], h:N, , [], ∅)}
Γ0, (NARROW : [], [tm, . . . , t1], h, [c1, . . . , ck], ) =⇒ Γk, {([], [hi], , [], ∅) | 1 ≤ i ≤ k}

where σi = [h := ci] and (Γi, hi) = cloneσi(Γi−1, t1) (1 ≤ i ≤ k)

Γ0, (CHOICE : [], [tm, . . . , t1], , [c1, . . . , ck], ) =⇒ Γk, {([], [hi], , [], ∅) | 1 ≤ i ≤ k}
where σi = [tm := ci] and (Γi, hi) = cloneσi(Γi−1, t1) (1 ≤ i ≤ k)

Fig. 1. Machine instruction set. Instructions map a heap and an active computation to a re-
vised heap and a set of result computations. Computations are described by tuples of the form
(I, N, R, T, F ), where I is an instruction sequence, N is the pre-narrex stack, R is the current
register, T is the pre-term stack, and F is the free variable map. code(f) denotes the sequence
of virtual machine instructions associated to function f as described in Section 3.7. Standard
Haskell-style list notation is used for stacks and sequences. An underscore ( ) denotes a field
whose contents don’t matter

A number of instructions manipulate the pre-term stack. PUSH and POP move han-
dles between the current register and the stack. MAKEANON creates a fresh, indepen-
dent free variable in the heap and pushes its handle. MAKEVAR pushes the handle of
a (potentially) shared free variable (previously created by STOREVAR) from the shared
free-variable map. MAKETERM s constructs a new term representation in the heap with
root symbol s and the top arity(s) elements of the stack as arguments, and pushes its
handle in place of the arguments. Finally, REPLACE updates the handle on the top of
pre-narrex stack to have the same contents as the handle in the current register.
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1 LOAD 1 load u in the current register
2 BRANCH

[ u is an uninstantiated variable
3 MAKETERM [] pre-term stack contains []
4 MAKEANON push _
5 MAKEANON push _
6 MAKETERM : pre-term stack contains [] and _:_
7 NARROW

]

[ u is []
8 LOAD 2 load v
9 REPLACE

]

[ u is u0:us

10 LOAD 2 load v
11 PUSH

12 LOAD 1·2 load us

13 PUSH

14 MAKETERM ++ pre-term stack contains us++v
15 LOAD 1·1 load u0

16 PUSH

17 MAKETERM : pre-term stack contains u0:us++v
18 POP

19 REPLACE

]

Fig. 2. Compilation of the definition of the function “++”. This code is executed to evaluate a
term of the form u++v. The instruction numbers at the left and the comments at the right are not
part of the code itself

The remaining instructions, which only appear at the end of an instruction sequence,
place multiple, non-deterministic alternative computations into the active pool. NAR-
ROW executes a narrowing step. When this instruction is executed, the current register
holds the handle for a variable v and and the pre-term stack holds handles for the in-
stantiations c1, . . . , ck, k > 0, of this variable. For each instantiation ci, the root term
of the computation t1 is cloned under the substitution [h := ci]. The computation ex-
ecuting the non-deterministic step is abandoned and a new computation corresponding
to each clone is added to the pool. Note that each new computation starts from the root
term and an empty pre-narrex stack; this stack gets rebuilt independently in each com-
putation. CHOICE is similar, except that it executes a non-deterministic reduction step.
When this instruction is executed, the top of the pre-narrex stack holds a narrex tm and
the pre-term stack holds the replacements c1, . . . , ck, k > 1, of this narrex. For each
replacement ci, the root term of the computation t1 is cloned under the substitution
[tm := ci].

There is one further instruction, RESIDUATE, which moves a computation from the
active pool to a waiting pool pending the instantiation of a logic variable. A precise
description of this instruction and of the remainder of the residuation mechanism are
beyond the scope of this paper.
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In addition to these instructions, some activities of the machine are performed by
built-in functions. Generally, these are library functions that could not be defined by
ordinary rewrite rules. An example of a built-in function is apply, which takes two terms
as arguments and applies the first to the second. For correctly-typed programs, the first
argument of apply evaluates to a term of the form f(x1, . . . , xn) where the arity of f
is greater than n, i.e., f is a partial application. The function apply performs a simple
manipulation of the representation of terms. It would be easy to replace the built-in
function apply with a machine instruction. However, built-in functions are preferable to
machine instructions because they keep the machine simpler and they are loaded only
when needed.

Figure 2 shows the code for the list concatenation function “++” defined in (4).
This code is executed when the top of the pre-narrex stack contains a term of the form
u++v.

3.7 Compilation

Every function of an overlapping inductively sequential program has a definitional
tree [2, 3], which is a hierarchical representation of the rewrite rules of a function that
has become the standard device for the implementation of narrowing computations. We
compile each definitional tree into a sequence of virtual machine instructions. Because
a definitional tree is a high-level abstraction for the definition of a sound, complete and
theoretically efficient narrowing strategy [6], mapping this strategy into virtual machine
instructions increases our confidence in both the correctness and the efficiency of the
execution. The notation for the variant of definitional trees we use is summarized in
Figure 3.

(definitional tree) T = Branch(p, pos, flex?, [T1, . . . , Tn])
| Rule(p, [r1, . . . , rn])

(right-hand side) r = ([v1, . . . , vn], t)

Fig. 3. Notation for definitional trees

A trees consist of internal Branch nodes, which encode choices between left-hand-
side patterns of rewrite rules, and leaf Rule nodes, which correspond to the right-hand
sides of rewrite rules. Branch nodes contain a pattern p to match, a position pos within
the term to be matched, a flag flex? indicating whether or not the branch is flexible or
rigid, i.e., whether to narrow or residuate if the corresponding position of a term being
processed is a variable. In the node Rule(p,rs), rs is a list of non-deterministic alternative
right-hand sides for the rule. Each right-hand side (vs, t) consists of a term t and a list
of free variables vs that appear in t but not in p.

As examples, the definitional tree for the function (++) defined in (4) is:

Branch(x++y,1,True, [Rule([]++y, [([], y)]),
Rule((x:xs)++y, [([], x:(xs++y))])],

the tree for palind (5) is:
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Rule(palind s, [([x, y], s =:= x++(y:reverse x))]),

and the tree for digit (1) is:

Rule(digit, [([], 0), ([], 1), . . . , ([], 9)]),

where, for readability, we write terms and patterns using infix notation.
Figure 4 gives an algorithm for compiling definitional trees to sequences of abstract

machine instructions. For simplicity, we assume all definitional trees are canonical, in
the sense that every Branch node corresponding to a position of type τ has a child for
each data constructor of τ , and the children are in the canonical order for data construc-
tors. (In reality, the compiler would use auxiliary type information to determine the full
set of possible children, and generate code to produce fail for the missing ones.) We
assume the existence of a function posOf v p that returns the position (if any) of vari-
able v in pattern p (assuming v appears at most once in p). Various optimizations on the
resulting code are possible; for example, the sequence of instructions [PUSH,POP] can
be omitted, as illustrated by the code in Figure 2, or the instructions STOREVAR n and
MAKEVAR n can be replaced by a single MAKEANON instruction for free variables
that occur only once in the right-hand side.

compileTree (Branch(p, pos, flex?, [T1, . . . , Tn])) =

[LOAD pos,
BRANCH [handleVariable,

compileTree T1,

...,

compileTree Tn]]

where handleVariable =

if flex? then
buildChoice1 ++ · · · ++ buildChoicen ++ [NARROW]

where buildChoicei = [MAKEANON1,. . .,MAKEANONni,

MAKETERM ci]

where ci(d1, . . . , dni) = (patternOf Ti) |pos
else [RESIDUATE]

compileTree (Rule(p, [rhs1, . . . , rhsn]) =

if n = 1 then
(compileRhs rhs1) ++ [POP,REPLACE]

else (compileRhs rhs1) ++ ... ++ (compileRhs rhsn) ++ [CHOICE]

where compileRhs ([v1, . . . , vn], t) =

[STOREVAR 1,...,STOREVAR n] ++ (compileTerm t)
where compileTerm (v) = if ∃j with v = vj then

[MAKEVAR j]
else [LOAD (posOf v p),PUSH]

compileTerm (s(t1, . . . , tn)) =

(compileTerm tn) ++ · · · ++ (compileTerm t1) ++

[MAKETERM s]

Fig. 4. Pseudo-code for compilation of definitional trees to sequences of virtual machine instruc-
tions. Standard Haskell-style notation is used for lists
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Some practical adjustments to the pseudo-code of Figure 4 are necessary to ac-
commodate built-in types, such as integers and characters. There are a few additional
machine instructions, e.g., MAKEINT and MAKECHAR, for this purpose.

4 Implementation

We have two prototype implementations of the virtual machine described in this paper.
One implementation, in Java, is currently our main development avenue. A second im-
plementation, in Standard ML, is being used mostly as a proof of concept. Since the
code is not optimized because it is still evolving, we do not present a detailed bench-
mark suite here. Nevertheless, the initial performance results appear to be promising.
A computationally intensive test computes Fibonacci numbers with an intentionally
inefficient program. This test shows that the machine executes approximately 0.5 mil-
lion reductions (i.e., function calls) per second on a 2.0 Ghz Linux-PC (with AMD
Athlon XP 2600). On the same benchmark, the PAKCS [14] implementation of Curry,
which compiles Curry programs into Prolog using the scheme in [7], runs about twice as
fast. PAKCS is one of the most efficient Curry implementations, apart from MCC [20],
which produces native code. However, neither of these implementations is operationally
complete. For example, neither produces a solution to example (3).

We have used Java and ML due to their built-in support for automatic memory man-
agement and appropriate programming abstractions which simplified the development
of our prototypes. The same approach has been taken in [16], which describes an ab-
stract machine for Curry and its implementation in Java. On the negative side, the use
of Java limits the speed of the execution—the Java implementation in [16] is more than
an order of magnitude slower than PAKCS [7]. On the positive side, our machine can
be also implemented in C/C++ from which we can expect a considerable efficiency im-
provement.1 A possible strategy is to integrate a C-based execution engine into the Java
support framework.

Non-deterministic computations are executed independently. However, because of
the use of term handles, a common deterministic term of two independent computations
is evaluated only once. For example, consider the term digit + t, where digit is
defined in (1). A distinct computation is executed for each replacement of digit, but t
is evaluated only once for all these computations. In situations of this kind, our machine
is faster than PAKCS.

In our implementations, a narrex is replaced in place (with a destructive update)
whenever possible. Non-deterministic steps prevent replacement in place, since several
replacements should update a single term. Currently, the machine constructs not only
the replacement of a narrex, but also the spine of the entire term in which the narrex
occurs. This is unnecessarily inefficient and we plan to improve the situation in the
future together with other optimizations of the machine architecture and code.

1 [16] compares the speed of the same virtual machine for Curry coded in Java vs. in C/C++. The
latter is more than one order of magnitude faster compared to a Java implementation with a
Just-In-Time compiler.
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Our virtual machine is intended for the execution of functional logic programs in a
variety of source languages. Our immediate choice of source language is Curry [18].
For this application, we have a complete compiler (written in Curry) into our virtual
machine but several other non-trivial software components, such as a command line
parser, a loader, a debugger and a run-time library, are necessary as well. The virtual
machine has good built-in capabilities for tracing and debugging. A specific problem
of an operationally complete implementation of non-deterministic computations is that
steps of different computations are interleaved. Presenting steps in the order in which
they are executed produces traces which are hard to read. An external debugger with
a suitable interface for non-deterministic computations is described in [9]. Finally, we
have implemented a handful of modules for built-in types, such as the integers, that
cannot be compiled from source programs.

To conclude, we have a solid, though preliminary, implementation of the virtual
machine. Several key software components of an interactive development environment
need further work. The Java implementation of the machine is available for download
from http://redstar.cs.pdx.edu/∼antoy/flp/vm. The distribution also links a
tutorial description of the machine including an animation of the behavior of the in-
structions.

5 Conclusion and Related Work

We have described the architecture of a virtual machine for the execution of functional
logic computations. The machine’s design is based on solid theoretical results. In par-
ticular, the machine is intended for overlapping inductively sequential programs and
computes only root-needed steps (modulo non-deterministic choices). Larger classes
of programs, up to those modeled by the whole class of constructor-based conditional
rewrite systems, can be executed after initial transformation.

A small set of machine instructions performs pattern matching and narrex replace-
ment, two key activities of the machine. Both narrowing and non-deterministic steps are
executed by a single instruction since the machine is specifically designed for functional
logic computations. The machine is also designed to execute several computations con-
currently to ensure the operational completeness. Implementations of the machine in
Java and ML are complete and fairly efficient, through not yet optimized.

The implementation of functional logic languages is an active area of research. A
common approach is the translation of functional logic source programs into Prolog
programs, where Prolog has the role of a portable, specialized machine language, e.g.,
[7]. Another approach relies on an abstract machine. The machine presented here is
only one of several alternatives the authors have considered. In [8], Antoy, Hanus, et
al. describe a virtual machine with many similarities to that described in this paper, but
a major difference. Functions are compiled into Java objects rather than sequences of
virtual machine instruction as in the example of Figure 2, i.e., the target language is
Java rather than an instruction set of a virtual machine. In [16] Hanus and Sadre pre-
sented also a virtual machine for compiling Curry programs that exploits Java threads
to implement the concurrent features of Curry and ensures the operational complete-
ness of non-deterministic computations. To manage the bindings of logical variables
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caused by different non-deterministic computations, they used bindings tables that are
partially shared between computations. The resulting architecture is more complex than
the machine presented in this paper and has fewer possibilities for optimization, e.g., the
sharing of deterministic evaluations between non-deterministic computations discussed
in Section 4. Thus, this implementation is no longer supported.

In [22], Tolmach, Antoy, and Nita describe a definitional interpreter for Curry-like
languages based on the semantics of Albert, et al. [1]. The primary contrast with the
present work is in the treatment of the heap. Rather than conceiving of the system as a
graph rewriting engine that generates modified copies of the source term as it runs, [22]
treats the program as fixed, read-only code that operates on multiple variant versions of
the heap. A direct performance comparison between these two approaches remains to
be made.

Among related work by others, Chakravarty and Lock [10] proposed a virtual ma-
chine for functional logic languages that combines implementation techniques from
functional and logic programming in an orthogonal way. To implement logic language
features, they used traditional logic programming implementation techniques based on
backtracking so that the operational completeness is not ensured. The same is true for
the virtual machine used in the Curry implementation MCC [20]. Due to the native
code compilation used in MCC, the implementation is quite efficient but not opera-
tional complete due to the use of a backtracking strategy.

A minimal comparison of efficiency was addressed earlier. However, our effort is
mainly characterized by the simplicity of both the instruction set and the storage areas
and by the rigorous theoretical results on which the machine is founded.
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Source-Based Trace Exploration

Olaf Chitil

University of Kent, UK

Abstract. Tracing a computation is a key method for program compre-
hension and debugging. Hat is a tracing system for Haskell 98 programs.
During a computation a trace is recorded in a file; then the user studies
the trace with a collection of viewing tools. Different views are comple-
mentary and can productively be used together. Experience shows that
users of the viewing tools find it hard to keep orientation and navigate to
a point of interest in the trace. Hence this paper describes a new view-
ing tool where navigation through the trace is based on the program
source. The tool combines ideas from algorithmic debugging, traditional
stepping debuggers and dynamic program slicing.

1 Hat and Its Views

A tracer gives us access to otherwise invisible information about a computation.
It is a tool for understanding how a program works and for locating the source
of runtime errors in a program. Hat is a tracer for the lazy functional language
Haskell 98. Hat combines the tracing methods of several preceding systems [13,
3, 4]. Tracing a computation with Hat consists of two phases, trace generation
and trace viewing:

input output hat-observe

self-tracing
computation

trace hat-trail

hat-detect

First, a special version of the program runs. In addition to its normal in-
put/output behaviour it writes a trace into a file. Second, after the program has
terminated, we study the trace with a collection of viewing tools:

– hat-detect provides algorithmic debugging, that is, semi-automatic local-
isation of program faults. Trace viewing consists of the system asking ques-
tions about the computation such as “Should factorial 3 = 42?” which we
have to answer with “yes” or “no”. After a series of questions and answers
the debugger gives the location of a fault in the program.

– hat-trail enables us to follow redex trails; we explore a computation back-
wards, from an effect — such as output or a runtime error — to its cause.

C. Grelck et al. (Eds.): IFL 2004, LNCS 3474, pp. 126–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Trace viewing consists of us selecting expressions whose parent, the func-
tion call that generated the expression, is then displayed. An example with
selected expressions underlined: 42 → 3*14 → 2*7 → factorial 2 →
factorial 3.

– hat-observe allows the observation of functions. A functional value is dis-
played as a finite mapping from all the arguments the function was called
with in the computation to the respective results, for example: {factorial 0
= 7, factorial 1 = 7, factorial 2 = 14, factorial 3 = 42}.

Each viewing tool gives a different view of a computation; in practice, the
views are complementary and can productively be used together [2]. The trace
as concrete data structure liberates the views from the time arrow of the com-
putation. Hat provides valuable insights into long computations of real-world
programs

Nonetheless, Hat still has a number of shortcomings. One of these is that
it is often hard to navigate through large computations. By using the existing
viewing tools together and calling one tool from the other we can in principle
quickly reach any point in the trace. However, the questions: “where am I in the
trace?” and “how do I get to the point I want to see in the trace?” often occur.
We require orientation guides.

One candidate for an orientation structure immediately springs to mind: the
program source. We are likely to be familiar with the source, because we wrote
it, read it beforehand and/or will have to modify it. All expressions in the trace
originate from the source. Usually the source is far shorter than the huge com-
putation trace.

Surprisingly, none of the existing viewing tools take advantage of the source.
All Hat viewing tools display only expressions and equations of the traced com-
putation. The tools just allow opening a source browser with the cursor posi-
tioned at the redex or at the definition of the function of current interest.

This paper describes a new Hat viewing tool, hat-explore, that allows
simple, free navigation through a trace while providing orientation based on the
program source. hat-explore combines ideas from algorithmic debugging, tra-
ditional stepping debuggers and dynamic program slicing. The following sections
describe in several steps the design of hat-explore and some implementation
issues. hat-explore is part of the Hat distribution which is available from
http://haskell.org/hat.

2 Algorithmic Debugging

Algorithmic debugging is based on the representation of a computation as an
Evaluation Dependency Tree (EDT) [6, 5]. Each node of the tree is labelled with
an equation, which is a reduction of a redex to a value. The tree is basically the
proof tree of a natural semantics for a call-by-value evaluation with ‘miraculous’
stops where arguments are not needed for the final result value. The call-by-value
structure ensures that arguments are values, not complex unevaluated expres-
sions. Figure 2 shows the EDT of the sorting program given in Figure 1. Note



128 O. Chitil

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : insert x ys

Fig. 1. A faulty insertion sort program

that {IO} denotes an IO-action value for which no informative representation is
available.

In algorithmic debugging an oracle decides which nodes of the EDT are cor-
rect and which are incorrect. A node is correct if and only if its reduction of a
function agrees with the semantics we as programmers intend the function to
have. A node that is incorrect but whose children are all correct is faulty. The
definition of the function reduced in this node is faulty and needs to be modified.
Hence the aim of algorithmic debugging is to find a faulty node. The definition
of a faulty node is intuitive: if a function call yields an incorrect result, but all
the calls made from this function call are correct, then the definition body must
be faulty. In the EDT of Figure 2 all nodes except the IO-related ones have been
declared as correct (

√
) or incorrect (×). The double framed nodes are faulty.

Both faulty nodes are caused by the same faulty part of the definition of insert.
A formal specification can be the basis of the oracle and the correctness of

nodes can be considered in any order. However, most algorithmic debugging
systems assume that the user is the oracle and implicitly traverses the EDT

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ <= ’o’ = False
√

insert ’s’ "" = "s"
√

sort "rt" = "r" × insert ’o’ "r" = "o" ×

sort "t" = "t"
√

insert ’r’ "t" = "r" × ’o’ <= ’r’ = True
√

sort "" = ""
√

insert ’t’ "" = "t"
√

’r’ <= ’t’ = True
√

Fig. 2. Evaluation Dependency Tree for insertion sort
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while answering questions about correctness with “yes” or “no”. Entering “no”
makes a child of the current node the new current node (If the node has no
children, the aim of debugging has been reached, because the current node is
faulty). Entering “yes” makes the next yet unvisited sibling of the current node
the new current node (if all siblings have been visited, then the next yet unvisited
sibling of the parent is chosen, and so on). Usually, the user of an algorithmic
debugging tool is not meant to be aware of these non-trivial navigation steps,
but shall just answer the questions.

3 Source-Based Free Navigation Through the Evaluation
Dependency Tree

Basically hat-explore is a tool for free navigation through an EDT. The EDT is
a complete representation of a computation. While navigation via “yes”/”no” an-
swers is fairly complex, it is straightforward to provide simple navigation through
the tree via the cursor keys: up to the parent, down to the first child, and left
and right to siblings. Most importantly, however, the program source can pro-
vide good orientation while traversing the EDT. The call-by-value structure of
the EDT ensures that the EDT reflects the program structure. If f . . . = . . . is
the reduction of a node, then the redexes of its children are all instances of the
definition body of the function f . Figure 3 demonstrates this property.

sort "t"︸ ︷︷ ︸ = "t"

sort ""︸ ︷︷ ︸ = "" insert ’t’ ""︸ ︷︷ ︸ = "t"

sort (x:xs)︸ ︷︷ ︸ = insert x (sort xs︸ ︷︷ ︸)︸ ︷︷ ︸

Fig. 3. Relationship between parent and children in EDT and program source

The display of hat-explore is divided into two parts: the current reduction
and the source. In the source the call site of the redex of the current reduction
is underlined.

==== Hat-Explore 0.3 ==== Call 2/2 ==============================

sort "t" = "t"

---- Insert.hs ---- line 1 to 9 ---------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x ( sort xs )

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)
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Optionally the definition site of the function of the redex can also be high-
lighted, but usually definition site and call site are far apart in the source and
having more than one source window would be confusing. The call site is a
smaller, more specific fragment of the source than the definition site. Addition-
ally, this fragment is directly surrounded by the call sites of the redexes of the
siblings of the current reduction. The call sites of the siblings are also highlighted
but not underlined like the current redex. When we change the current reduc-
tion via left or right cursor keys, only underlining changes in the source. So,
given the state of the last screenshot, pressing the left cursor key yields (display
shortened):

==== Hat-Explore 0.3 ==== Call 1/2 ==============================

insert ’r’ "t" = "r"

---- Insert.hs ---- line 1 to 5 ---------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

In contrast, a move to the parent via cursor key up or to a child via cursor
key down usually requires a complete change of the displayed source, because
parents and children are further away. So pressing cursor key down yields:

==== Hat-Explore 0.3 ==== Call 1/1 ==============================

’o’ <= ’r’ = True

---- Insert.hs ---- line 6 to 9 ---------------------------------

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

Pressing cursor key up once returns to the last but one screen. Pressing cursor
key up again yields:

==== Hat-Explore 0.3 ==== Call 1/2 ==============================

sort "ort" = "o"

---- Insert.hs ---- line 4 to 7 ---------------------------------

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

The call site of a parent or child can be in a different module. hat-explore
lazily loads a module source when it is needed and displays it.

4 A Stack for Context

Experience shows that after some navigation we still often lose orientation. We
know the call site of the current reduction, but a single call site is possibly used
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very often in a computation. More contextual information about the current re-
duction is needed. So a stack of parents is added to the display of hat-explore.
It shows the descendants chain of reductions from main = {IO} down to the cur-
rent reduction as last element. Every time we move down to a child, this child is
pushed on the stack; every time we move up to a parent, an element is popped
from the stack. Hence the stack is displayed upside down, with the top element
in the bottom line.

==== Hat-Explore 1.0 ==== Call 1/2 ==============================

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

---- Insert.hs ---- line 3 to 9 ----------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

In practice reductions are much larger than in the small sorting example; a
single reduction may cover several lines. Hence only a small number of reduc-
tions can be shown at a time. Experience shows that in most cases the last few
reductions are sufficient for orientation in the EDT.

5 Source-Based Algorithmic Debugging

hat-explore still supports algorithmic debugging. We can declare if the cur-
rent reduction is correct or incorrect with respect to our intentions and also
change and take back any previous such declaration. The tool uses several colours
for highlighting: correct reductions are green , incorrect ones are yellow , un-
known/undeclared ones are blue . When the tool identifies a reduction as faulty,
it is highlighted in red .

Let us work step by step through an example session for the faulty insertion
sort program. The tool starts with the reduction of main.

==== Hat-Explore 2.00 ==== Call 1/1 =============================

1. main = {IO}

---- Insert.hs ---- lines 1 to 3 --------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

We cannot say if this reduction is correct, but only press cursor down to look at
the children:
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==== Hat-Explore 2.00 ==== Call 1/2 =============================

1. main = {IO}
2. putStrLn "os" = {IO}

---- Insert.hs ---- lines 1 to 3 ---------------------------------

main = putStrLn ( sort "sort" )

sort :: Ord a => [a] -> [a]

The first child is a reduction of a trusted function and hence assumed to be
correct. So we press cursor right to look at the second child:

==== Hat-Explore 2.00 ==== Call 2/2 =============================

1. main = {IO}
2. sort "sort" = "os"

---- Insert.hs ---- lines 1 to 3 --------------------------------

main = putStrLn ( sort "sort" )

sort :: Ord a => [a] -> [a]

This reduction disagrees with our intentions and hence we press ’w’ to declare
the reduction as wrong:

==== Hat-Explore 2.00 ==== Call 2/2 =============================

1. main = {IO}
2. sort "sort" = "os"

---- Insert.hs ---- lines 1 to 3 --------------------------------

main = putStrLn ( sort "sort" )

sort :: Ord a => [a] -> [a]

To find out why the reduction is wrong we have to look at the children, so we
press cursor down:

==== Hat-Explore 2.00 ==== Call 1/2 =============================

1. main = {IO}
2. sort "sort" = "os"

3. insert ’s’ "o" = "os"

---- Insert.hs ---- lines 3 to 5 --------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

We press ’c’ to declare the reduction as correct and then press cursor right to
look at the second child:
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==== Hat-Explore 2.00 ==== Call 2/2 =============================

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs ---- lines 3 to 5 --------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x ( sort xs )

We press ’w’ to declare the reduction as wrong and then press cursor down to
inquire further:

==== Hat-Explore 2.00 ==== Call 1/2 =============================

2. sort "sort" = "os"

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

---- Insert.hs ---- lines 3 to 5 --------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

We press ’w’ to declare the reduction as wrong:

==== Hat-Explore 2.00 ==== Call 1/2 =============================

2. sort "sort" = "os"

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

---- Insert.hs ---- lines 3 to 5 --------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x ( sort xs )

So the reduction insert ’o’ "r" = "o" is faulty. We have located the fault,
it must be in the definition of insert. If we are not convinced, we can still
press cursor down to see that insert ’o’ "r" = "o" has only a single child, a
reduction of a trusted function, which is assumed to be correct:

==== Hat-Explore 2.00 ==== Call 1/1 =============================

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

5. ’o’ <= ’r’ = True

---- Insert.hs ---- lines 7 to 9 --------------------------------

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

Declaring the (in)correctness of the current reduction is separate from navi-
gation; it does not automatically navigate to a new reduction. Thus we are free
to declare (in)correctness of reductions in any order. In practice it is often much
easier to recognise an incorrect reduction than being sure that a reduction is
correct. hat-explore allows us to look at all children of a redex, determine that
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one of them is incorrect, and continue exploring that reduction, without having
to consider the correctness of its siblings. We might not even rely on algorithmic
debugging at all but just use declarations of (in)correctness as memory hints.

6 Program Slicing

Algorithmic debugging is based on the principle that if a node of the EDT is
incorrect, then a faulty node must be amongst this node and its descendants,
that is, the bug is in that sub-EDT of the EDT. If a sub-EDT of this sub-EDT
has a correct node as root, that sub-EDT can be subtracted, the faulty node
must be in the remaining sub-EDT. During algorithmic debugging the faulty
sub-EDT is cut smaller and smaller, until it is reduced to a single node, the
faulty node. hat-explore marks the definition of the function reduced in the
faulty node. However, that happens only rather late, after the faulty node has
been identified. So in addition, hat-explore can mark the definitions of all
functions that are reduced in the nodes of the current faulty sub-EDT. These
definitions comprise the faulty slice.

In the example session of the previous section a faulty slices is marked in
italics. When sort "sort" = "os" is declared as wrong, the definition of sort
and insert become the faulty slice. When insert ’o’ "r" = "o" is declared
as wrong, the definition of sort is subtracted from the faulty slice, leaving only
the definition of insert.

While we declare nodes as correct or incorrect, the faulty sub-EDT and thus
the slice of definitions that must contain a fault keep shrinking. The shrinking of
the faulty slice shows us that we are making progress, it may quickly exclude large
parts of the program, possibly parts that had been wrongly suspected, and when
the faulty slice has become small we may spot the fault straight away without
even having to continue algorithmic debugging to its end. While traversing an
EDT we often skip declaring the correctness of a node; for example, because
it might be hard (large input or output) or impossible (values of abstract data
types) to determine. Figure 4 shows a partially annotated EDT where the nodes
of the faulty sub-EDT are marked.

A faulty sub-EDT of a partially annotated EDT is defined as a minimal
connected subgraph such that for any completion of the annotation the sub-
EDT contains a faulty node. So an unannotated EDT has no faulty sub-EDT,
because all nodes might be correct. In general an annotated EDT can have
several (disjoint) faulty sub-EDTs. hat-explore marks the faulty sub-EDT
that contains the currently viewed node or, if the current node is outside of any
faulty sub-EDT, the next faulty sub-EDT above the current node.

7 Smaller Faulty Slices and Code Coverage

The faulty slice can be made smaller without additional input from us. Keeping
the faulty sub-EDT unchanged, we can determine a smaller faulty slice. When
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main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"

’s’ <= ’o’ = False
√

insert ’s’ "" = "s"

sort "rt" = "r" × insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ <= ’r’ = True
√

sort "" = "" insert ’t’ "" = "t" ’r’ <= ’t’ = True
√

Fig. 4. A Faulty Sub-EDT

the faulty sub-EDT contains a reduction f . . . = . . ., it is not necessary to add the
whole definition of function f to the faulty slice. For a specific reduction usually
only parts of the definition body of the reduced function are evaluated because of
pattern matching, conditionals and lazy evaluation. The fault can only be in that
part of the definition that was actually evaluated for that particular reduction.
Evaluated parts of the definition are the call sites of the children of the node plus
demanded constants, data constructor applications and literals.1 hat-explore
optionally only shows this smaller faulty slice. In our example program the “else”
branch was never evaluated for the current, incorrect reduction.

==== Hat-Explore 2.03 ==== Call 2/2 | faulty slice | executed ===

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs ---- line 3 to 9 ----------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x ( sort xs )

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

1 If a constant is evaluated, it is impossible to determine if it was demanded for
the currently considered reduction or a different part of the computation, because
constants are shared. For most data constructor applications and literals, the entry in
the Hat trace contains no indication if they were ever demanded in the computation.
To be on the safe side, in all such cases the expression has to be included in the slice,
if the surrounding expression construct is included.
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Unfortunately it is no longer true that the fault has to be within the faulty
slice. The fault may also be within the patterns on the left-hand-sides of the
defining equations. 2 The fault might even be that an equation that should be
there is missing. This last possibility cannot be expressed well by marking any
slice at all.

By declaring the root reduction of the EDT, main = {IO}, as incorrect and
asking hat-explore to mark only the evaluated faulty slice, we can obtain the
slice of the program that was evaluated at all during the whole computation:

==== Hat-Explore 2.03 ==== Call 1/1 | faulty slice | executed ===

1. main = {IO}

---- Insert.hs ---- line 1 to 9 ---------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

So hat-explore can serve as a code coverage tool.

8 Trusting

Hat supports a notion of trusting modules. The computation of these modules is
not traced [3]. By default all Haskell standard libraries are trusted. The reduction
of a trusted function is still recorded in the trace. For example, length "hi" =
2 may be recorded, but not its recursive call length "i" = 1. So leafs of the
EDT can be reductions of trusted functions. hat-explore assumes by default
that these reductions are correct.

Trusted functions can be higher-order and the functional arguments may be
normal untrusted functions [10, 5], for example map myInc [1,2,3] = [2,3,4].
In that case the reduction of the trusted function can have children, namely
the reductions of the passed untrusted functions. So map myInc [1,2,3] =
[2,3,4] has the children myInc 1 = 2, myInc 2 = 3 and myInc 3 = 4. In gen-
eral, trusting causes parts of an EDT to be “cut out”, even out of the middle of

2 The Hat trace does not include any information on the pattern matching process.
For an unsuccessful match it cannot be determined which parts of a pattern were
used and exactly where matching failed. The trace has no information on locations
of patterns in the source. Nonetheless, Hat works fine for computations that abort
with a pattern match failure, as Section 10 demonstrates.
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the tree. If a trusted reduction has children, it cannot assumed to be correct by
default.

The children of trusted higher-order functions have call sites within trusted
modules. Displaying these call sites would contradict the idea of a trusted mod-
ule whose implementation is irrelevant.3 So when the current reduction is the
child of a trusted reduction, hat-explore highlights the call site of the trusted
parent instead of the child; it does so in a different style to indicate the different
situation. The children of such a reduction without call site are again reductions
with call site. So there is no danger of us losing orientation because we might have
to make a long sequence of navigation steps without highlighting of call sites.

==== Hat-Explore 2.03 ==== Call 2/4 | faulty slice | executed ===

1. main = {IO}
2. sort "sort" = "os"

3. foldr insert [] "sort" = "os"

4. insert ’r’ "t" = "r"

---- FoldrInsert.hs ---- line 3 to 9 -----------------------------

sort :: Ord a => [a] -> [a]

sort xs = foldr insert [] xs

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

9 Constants

A constant definition, such as nats = [0..], has to be handled specially in the
construction of an EDT. In a computation the definition body is only evaluated
once and the value is shared by all calls (i.e. uses) of the constant in the program.
The algorithmic debugger Freja [5] does not include the reduction of a constant
at its call site, but produces a forest of EDTs, one EDT per constant definition
(the definition of main is a constant definition). This approach would complicate
free navigation. Hence in hat-explore there is only a single EDT with the EDT
of a constant inserted at its call sites. The EDT of the constant is shared by all
call sites, so that the EDT is no longer a tree but a directed graph. Navigation
into the EDT of a constant is natural. Where to go back up is also uniquely
identified by the information in the stack.

Because constant definitions may be (mutually) recursive, the EDT may be
cyclic. Algorithmic debugging only works for trees or acyclic graphs. It is cur-
rently the responsibility of the user to be aware that algorithmic debugging may
not be able to locate a faulty reduction within the computation of mutually re-
cursive functions. The faulty slice is still correct, but it may never shrink further
than a set of mutually recursive definitions.

3 Hence the Hat trace also does not contain any such source location information.
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10 Other Starting Points

Normally hat-explore starts with the reduction of main. Although paths
through the EDT are only logarithmic in the size of the tree, a reduction of
interest may still be far away from the root.

Other viewing tools such as hat-trail and hat-observe may give quicker
access to a reduction of interest. It was simple to extend these tools so that we
can directly switch from one of them to hat-explore, starting at the reduction
that we just investigated in the other tool.

Experience shows that faults are often not far (within the EDT) from the
observed error. Hence the feature of hat-trail, to start directly at the reduction
that raised a runtime error, has been added to hat-explore. A slightly modified
version of our insertion sort causes a pattern match failure. hat-explore starts
as follows, displaying the error value as | (bottom):

==== Hat-Explore 2.03 ==== Call 1/2 | faulty slice | complete ===

4. sort "rt" = _|_

5. sort "t" = _|_

6. insert ’t’ [] = _|_

---- Insert.hs ---- line 1 to 9 ---------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

11 Implementation

hat-explore has been implemented in about 1000 lines of Haskell. It also uses
a library for accessing the trace that is shared with other viewing tools.

The Hat trace is a complex graph of expression components. The reconstruc-
tion of an EDT from this structure is described in [13]. For the efficiency of
hat-explore it is important that a small part of an EDT can be constructed
easily from reading only a small part of the trace. So both memory and time
costs for the construction of the small part of an EDT that is demanded by the
user in a single interaction step is independent of the generally huge size of the
trace. Only determining the faulty slice is expensive. It requires traversing the
whole faulty sub-EDT in the trace. Hence the user can turn off this feature.

The algorithmically most complex part of hat-explore is the handling of
source slices. A slice is a set of source locations, where a location consists of start
line and column and end line and column. hat-explore comprises an abstract
data type of slices with several functions for combining and subtracting slices.
Slices are used to highlight parts of the source while excluding subexpressions.
In an extreme case an application has to be highlighted, without highlighting its
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function and arguments. The slice for highlighting can be obtained by subtract-
ing the locations of the subexpressions from the location of the whole applica-
tion. In the case of an application only the space between the function and the
arguments may remain in the slice.

To support hat-explore, Hat required two extensions: Originally the trace
contained for each recorded expression and each defined function the filename,
line and column where it starts in the source. Now Hat records a full location
that also includes the line and column at which such an expression or definition
ends. The lexer and parser had to be modified and the abstract syntax tree
slightly extended. Second, now a trusted reduction in the trace has an explicit
list of pointers to its children. In the past, hat-detect used an incomplete
approximation algorithm to determine children; to find all children for certain, a
time consuming search through most of the trace would have been required. Only
the definition of a single combinator in the Hat library of tracing combinators
[3] had to be modified. Both extensions slightly changed the trace file format,
but only few changes in a library for accessing the trace were needed to make
all previously existing Hat viewers work with the file format. Overall, both
extensions only needed a small number of changes to Hat and benefit other
viewing tools besides hat-explore.

hat-explore has a simple textual user interface based on text interleaved
with ANSI escape sequences for various forms of highlighting. This user interface
is portable and was easy to implement. Nonetheless it has its limitations; in
particular, different highlighting of nested expressions yields output that is hard
to read. For this purpose multiple underlining similar to the old redex trail
browser [11] would be more suitable.

12 Related Work

Using hat-explore reminds one of using a classical stepping debugger for an
imperative programming language, such as DDD3. The debugger highlights the
current execution line. The user can perform one execution step, moving to a
line which was called from the previous line. Alternatively, the user can go to
the next line, skipping the execution of all function calls. So the source-based
navigation model of hat-explore has already been proven useful for imperative
languages. Users of these stepping debuggers can build on previous experience
when moving to hat-explore. While the user steps through the computation
hat-explore also provides with each function call its result. In a side-effect free
functional language the result fully describes the semantics of the function call.
Thus it is far easier to locate the faulty program part than it is in a stepping
debugger for an imperative language.

Algorithmic debugging [9] has been the starting point for hat-explore.
There exist several algorithmic debuggers for lazy functional languages [5, 13, 8].
They all allow more direct navigation through the EDT then via “yes”/”no” an-

3 http://www.gnu.org/software/ddd/
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swers but they do not encourage free navigation. They do not use the
source.

Program slicing is a well-known technique for analysing and particularly de-
bugging programs [12]. The faulty slice of hat-explore (both with full defi-
nitions and with evaluated expressions only) is a dynamic slice in that sense,
with the reduction of the root node as slicing criterion. However, whereas pro-
gram slicing is based on the control and data flow of a computation, the EDT
expresses the control and data flow of a computation only in a limited form.

In [7] a slicing method for a core of the Haskell-like functional logic lan-
guage Curry is described. Although the slicing criterion is also based on a re-
duction, these slices are not related to EDTs and the authors do not claim
that a fault has to be within a slice. Their trace structure [1], although also
called redex trail, differs in several points from the Hat trace. In particular,
parent pointers have a different meaning; they do not point to an EDT par-
ent and hence it is doubtful that an EDT can be reconstructed from this trace
structure.

13 Conclusions and Future Work

hat-explore is a new trace viewing tool for the Hat system that enables us
to navigate freely and intuitively through the trace of a Haskell 98 program.
The display of the source together with a stack of reductions for the context
give good orientation. The tool combines algorithmic debugging with program
slicing and the user interface of a traditional stepping debugger. Initial informal
feedback from users has been positive.

The Hat system gives important insights into the internals of computations
of Haskell programs. Nonetheless there is still much work to do. Features of
several existing Hat viewers could be combined. In particular, it is possible to
merge hat-trail and hat-explore. However, the resulting tool might be too
complex to use. Alternatively, hat-trail could be extended by source-based
orientation facilities. Hat does not support all types of programs well. For
example, tracing of IO intensive programs is limited because the IO monad
is just treated as an abstract data type with unknown values; some higher-
order programs rely on a complex control flow that is hard to visualise ade-
quately.

This paper demonstrates that it is relatively easy to extend the Hat system
by a new viewing tool for which it was not designed originally. Hat provides a
modular framework for further exploration of tracing systems.
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Abstract. One performance-critical phase in the SML.NET compiler
involves rewriting intermediate terms to monadic normal form and per-
forming non-duplicating β-reductions. We present an imperative algo-
rithm for this simplification phase, working with a mutable, pointer-
based term representation, which significantly outperforms our existing
functional algorithm. This is the first implementation and evaluation of
a linear-time rewriting algorithm proposed by Appel and Jim.

1 Introduction

SML.NET [3, 4] is a compiler for Standard ML that targets the .NET Com-
mon Language Runtime [7]. Like most other compilers for functional languages
(e.g. GHC [10]), SML.NET is structured as the composition of a number of
transformation phases on an intermediate representation of the user program.
As SML.NET is a whole program compiler, the intermediate terms are typically
rather large and good performance of the transformations is critical for usability.

Like MLj [5], SML.NET uses a monadic intermediate language (MIL) [2]
that is similar to Moggi’s computational metalanguage. Most of the phases in
SML.NET perform specific transformations, such as closure conversion, arity
raising or monomorphisation, and are run only once. In between several of these
phases, however, is a general-purpose ‘clean-up’ pass called simplify. Running
simplify puts the term into monadic normal form [6, 8], which we have previ-
ously called cc-normal form and is essentially the same as A normal form or
administrative normal form for CPS [8]. The simplify pass also performs shrink-
ing reductions: β-reductions for functions, computations, products that always
reduce the size of the term.

Appel and Jim [1] describe three algorithms for shrinking reductions. The first
‘näıve’ and second ‘improved’ algorithms both have quadratic worst-case time
complexity, and the third ‘imperative’ algorithm is linear, but requires a mutable
representation of terms. Appel and Jim did not implement the third algorithm,
which does not integrate easily in a mainly-functional compiler. Both SML/NJ
and SML.NET use the ‘improved’ algorithm, which is reasonably efficient in
practice. Nevertheless, SML.NET spends a significant amount of time performing
shrinking reductions. We have now implemented a variant of the imperative
algorithm in SML.NET, and achieved significant speedups.

C. Grelck et al. (Eds.): IFL 2004, LNCS 3474, pp. 142–159, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This paper makes several contributions. It gives the first implementation
and benchmarks of the imperative algorithm in a real compiler. It extends the
imperative algorithm to a richer language than considered by Appel and Jim. It
introduces a ‘one-pass’ traversal strategy, giving a weak form of compositionality.
An extended version of this work appears in the third author’s PhD thesis [9].

2 Simplified MIL

For purposes of exposition we present a simplified version of MIL:

Atoms a, b ::= x | c

Values v, w ::= a | pair(a, b) | proj1(a) | proj2(a) | inj1(a) | inj2(a)
Computations m,n, p ::= app(a, b) | letfun f(x) be m in n

| val(v) | let x be m in n | case a of (x1)n1 ; (x2)n2

where variables are ranged over by f, g, x, y, z, and constants are ranged over by
c. Note that the letfun construct binds a possibly recursive function.

We say that a reduction is a shrinking reduction if it always reduces the size
of terms (counting the number of nodes). The most important reductions are
given by the shrinking β-rules:

(→ .β0) letfun f(x) be n in m −→ m, f /∈ fv(m)
(→ .β1) letfun f(x) be m in C[app(f, a)] −→ C[m[x := a]], f /∈ fv(C[·],m, a)
(T.β0) let x be val(v) in m −→ m, x /∈ fv(m)
(T.βa) let x be val(a) in m −→ m[x := a]
(×.β) let y be val(pair(a1, a2)) in C[proji(y)]

−→ let y be val(pair(a1, a2)) in C[ai]
(+.β) let y be val(inji(a))

in C[case y of (x1)n1 ; (x2)n2]

−→ let y be val(inji(a)) in C[ni[xi := a]]

We write Rβ for the one-step reduction relation defined by the β-rules. The
simplify transformation also performs commuting conversions. These ensure that
bindings are explicitly sequenced, which enables further rewriting.

(T.CC) let y be (let x be m in n) in p

−→ let x be m in let y be n in p

(→.CC) let y be (letfun f(x) be m in n) in p

−→ letfun f(x) be m in let y be n in p

(+.CC) let y be (case a of (x1)n1 ; (x2)n1) in m

−→ letfun f(y) be m in case a of (x1)let y1 be n1 in app(f, y1)
; (x2)let y2 be n2 in app(f, y2)
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We write RCC for the one-step reduction relation defined by the CC-rules, and
R for Rβ ∪RCC . Unlike the β rules, the commuting conversions are not actually
shrinking reductions. However, T.CC and →.CC do not change the size, whilst
+.CC gives only a constant increase in the size.

An alternative to the +.CC rule is:

(+.CC ′) let y be case a of (x1)n1 ; (x2)n2 in m

−→ case a of (x1)let y1 be n1 in m1 ; (x2)let y2 be n2 in m2

where y1, y2 are fresh, mi = m[y := yi]. This rule duplicates the term m and can
exponentially increase the term’s size. The +.CC rule instead creates a single
new abstraction, shared across both branches of the case, though this inhibits
some further rewriting. We write R′

CC for the one-step relation defined by the
CC-rules where (+.CC) is replaced by (+.CC ′), and R′ for Rβ ∪R′

CC .

Proposition 1. R′ is strongly-normalising.

Proof. First, note that Rβ is strongly-normalising as Rβ-reduction strictly de-
creases the size of terms. We define two measures |·|β and |·|cc on terms:

|a|β = 1
|proji(a)|β = |inji(a)|β = 2
|app(a, b)|β = |pair(a, b)|β = 3

|letfun f(x) be m in n|β = |m|β + |n|β + 1
|let x be m in n|β = |m|β + |n|β + 1

|val(v)|β = |v|β + 1

|case a of (x1)n1 ; (x2)n2|β = max (|n1|β , |n2|β) + 2

|a|cc = 1
|proji(a)|cc = |inji(a)|cc = 2
|app(a, b)|cc = |pair(a, b)|cc = 3

|letfun f(x) be m in n|cc = |m|cc + |n|cc + 1

|let x be m in n|cc = |m|2cc + |n|cc + 1
|val(v)|cc = |v|cc + 1

|case a of (x1)n1 ; (x2)n2|cc = max (|n1|cc, |n2|cc) + 2

The lexicographic ordering (|·|β , |·|cc) is a measure for R′-reduction. Each
shrinking β-reduction decreases |.|β , whilst each CC-reduction decreases |.|cc

and leaves |.|β unchanged. ��

Proposition 2. R is strongly-normalising.

The proof uses R′-reduction to simulate R-reduction. The full details are
omitted, but the idea is that for any R-reduction a corresponding non-empty
sequence of R′-reductions can be performed. Thus, given that all R′-reduction
sequences are finite, all R-reduction sequences must also be finite. The proof is
slightly complicated by the fact that no non-empty sequence of R′-reductions
corresponds with the β-reduction of a function introduced by the +.CC rule. A
simple way of dealing with this is to count a +.CC ′-reduction as two reductions.

Note that R-reductions are not confluent. The failure of confluence is due to
the (+.CC) rule. Replacing (+.CC) with (+.CC ′) does give a confluent system.
Confluence can make reasoning about reductions easier, but we do not regard
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failure of confluence as a problem. In our case, preventing exponential growth in
the size of terms is far more important.

3 Previous Work

Appel and Jim [1] considered a calculus which is equivalent to a sub-calculus of
our simplified MIL. In our setting the reductions that their algorithms perform
are equivalent to: → .β1-, ×.β-, T.β0-, and a restriction of → .β0-reduction.
Appel and Jim show that their calculus is confluent in the presence of these
reductions, and other ‘δ-rules’ satisfying certain criteria.

The reductions rely on knowing the number of occurrences of a particular vari-
able. The quadratic algorithms store this information in a table Count mapping
variable names to their number of occurrences. Appel and Jim’s näıve algorithm re-
peatedly (i) zeros the usage counts, (ii) performs a census pass over the whole term
to update the usage counts and then (iii) traverses the term performing reductions
on the basis of the information in Count, until there are no redexes remaining.

The improved algorithm, used in SML/NJ and SML.NET, dynamically up-
dates the usage counts as reductions are performed. This allows more reductions
to be performed on each pass, and only requires a full census to be performed
once. The improved algorithm is better in practice, but both algorithms have
worst-case time complexity Θ(n2) where n is the size of the input term.

Appel and Jim’s imperative algorithm runs in linear time and uses a pointer-
based representation of terms which directly links all occurrences of a particular
variable. This enables an efficient test to see if removing an occurrence will
create any new redexes, and an efficient way of jumping to any such redexes.
The algorithm first traverses the program tree collecting the set of all redexes.
Then it repeatedly removes a redex from the set and reduces it in-place (possibly
adding new redexes to the set), until none remain.

4 A Graph-Based Representation

Our imperative algorithm works with a mutable graph representation comprising
a doubly-linked expression tree and a list of pairs of circular doubly-linked lists
collecting all the recursive (respectively non-recursive) uses of each variable. Such
graphs can naturally be presented pictorially as shown by the example in Fig. 1.

Figure 2 shows the β-reductions for functions in this pictorial form. We find
the pictorial representation intuitively very useful, but awkward to reason with

Fig. 1. Pictorial representation of let x be app(f, a) in val(pair(x, x))
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Fig. 2. Graph reductions

or use in presenting algorithms. Hence, like Appel and Jim, we will work with a
more abstract structure comprising an expression tree and a collection of maps
which capture the additional graphical structure between nodes of the tree.

The structure of expression trees is determined by the abstract syntax of
simplified MIL. In order to capture mutability we use ML-style references. Each
node of the expression tree is a reference cell. We call the entities which reference
cells contain objects. Given a reference cell l, we write !l to denote the object of
l, and l := u to denote the assignment of the object u to l.

Atoms !a, !b ::= r | c

Values !v, !w ::= a | pair(a, b) | proj1(a) | proj2(a) | inj1(a) | inj2(a)
Computations !m, !n, !p ::= app(a, b) | letfun f(x) be m in n

| val(v) | let x be m in n | case a of (x1)n1 ; (x2)n2

e ::= v | m d ::= e | x | r

where f, g, x, y, z range over defining occurrences, and r, s, t over uses. We write
parent(e) for the parent of the node e. A distinguished sentinel node, root , marks
the top of the expression tree. The object dead (omitted from the grammar) is
used to indicate a dead node. If a node is dead then it has no parent. The root
node is the parent of the proper expression tree and is always dead. We define
children(e) of an expression node to be the set of nodes appearing in !e.

Initially both parent and children are entirely determined by the expression
tree. However, in our algorithm we take advantage of the parent map in order
to classify expression nodes as active or inactive. We ensure that the following
invariant is maintained: for all expression nodes e, either

– e is active: parent(d) = e, for all d ∈ children(e);
– e is inactive: !(parent(d)) = dead for all d ∈ children(e); or
– e is dead: !e = dead.

We define splicing as the operation which takes one subtree m and substitutes
it in place of another subtree n. The subtree m is removed from the expression
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Fig. 3. Triggering non-local reductions

tree and then reintroduced in place of n. The parent map is adjusted accordingly
for the children of m. We define splicing a copy as the corresponding operation
which leaves the original copy of m in place. The operation �q� returns a new
node containing q, with parent root . When embedded in an enclosing node e[�q�],
the parent of �q� is e. In patterns, �·� matches against the contents of a node.

The def-use maps abstract the structures used for representing occurrences:

– def (r) gives the defining occurrence of the use r.
– non-rec-uses(x) is the set of non-recursive uses of the defining occurrence x.
– rec-uses(x) is the set of recursive uses of the defining occurrence x.

In the real implementation occurrences are held in a pair of doubly-linked circular
lists, such that each pair of lists intersects at a defining occurrence. We find it
convenient to overload the maps to be defined over all occurrences and also define
some additional maps:

non-rec-uses(r) = non-rec-uses(def (r))

rec-uses(r) = rec-uses(def (r)) def (x) = x

occurrences(r) = uses(r) ∪ {def (r)} uses(r) = non-rec-uses(r) ∪ rec-uses(r)

None of these additional definitions affects the implementation.
The graph structure allows constant time movement up and down the expres-

sion tree in the normal way, but also allows constant time non-local movement
via the occurrence lists. For example, consider the dead-function eliminations:

letfun f(x) be m in C[letfun g(y) be app(f, y) in n]
−→(→.β0) letfun f(x) be m in C[n] −→(→.β0) C[n]

where f, g �∈ fv(C, n), illustrated in Fig. 3. After one reduction, g is dead, so its
definition can be deleted, removing the only use of f . Since this use is connected
to its defining occurrence, we can detect that the definition of f is now dead. The
defining occurrence is connected to its parent (root) so the new dead-function
redex can be reduced under the parent.
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5 A One-Pass Algorithm

In contrast to Appel and Jim’s imperative algorithm, the algorithm we have
implemented operates in one-pass. Essentially, the one-pass algorithm performs
a depth-first traversal of the expression tree, reducing redexes on the way back
up the tree. Of course, these reductions may trigger further reductions elsewhere
in the tree. By carefully deactivating parts of the tree, we are able to control
the reduction order and limit the testing required for new redexes. Here is an
outline of our one-pass imperative algorithm:

contract(e) = reduceCCs(e)
deactivate(e)
apply contract to children of e
reactivate(e)
reduce(true, e)

reduce(initial , e) = if e is a redex then
reduce e in place
perform further reductions triggered by reducing e

The operation reduceCCs(e) performs commuting conversions on the way
down the tree. The order of commuting conversions can have a significant ef-
fect on code quality, a poor choice leading to many jumps to jumps. We have
found that the approach of doing them on the way down works well in prac-
tice (although the contract algorithm would still be valid without the call to
reduceCCs).

reduceCCs(e) = case !e of
(let y be e′ in p) ⇒

if reduceCC (e, y, e′, p) �= ∅ then reduceCCs(e) else skip
( ) ⇒ skip

reduceCC (e, y, e′, p) = case !e′ of
(letfun f(x) be m in n) ⇒

splice �let y be n in p� in place of e′

splice �letfun f(x) be m in e′� in place of e
return {e′}

(let x be m in n) ⇒
splice �let y be n in p� in place of e′

splice �let x be m in e′� in place of e
return {e′}

(case a of (x1)n1 ; (x2)n2) ⇒
splice �let y1 be n1 in �app(f, y1)�� in place of n1

splice �let y2 be n2 in �app(f, y2)�� in place of n2

splice �letfun f(y) be p in �case a of (x1)n1 ; (x2)n2��
in place of e (where f is fresh)
return {n1, n2}

( ) ⇒ return ∅
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Note that commuting conversions can also be triggered by other reductions.
The return value for reduceCC will be used in the definition of reduce in order
to catch reductions which are triggered by applying commuting conversions.

deactivate(e) deactivates e: parent(d) is set to dead for every d ∈ children(e).
reactivate(e) reactivates e: parent(d) is set to e for every d ∈ children(e).

Deactivating nodes on the way down prevents reductions from being triggered
above the current node in the tree. On the way back up the nodes are reactivated,
allowing any new redexes to be reduced. Because subterms are known to be
normalised, fewer tests are needed for new redexes. Consider, for example:

let y be (let x be m in n) in p −→T.CC let x be m in let y be n in p

Because we know that let x be m in n is in normal form, m cannot be of the
form let(. . . ), letfun(. . . ), case(. . . ) or val(. . . ). Hence, it is not necessary to check
whether let x be m in let y be n in p is a redex. (Of course, let y be n in p may
still be a redex, and indeed exposing such redexes is one of the main purposes
of performing CC-reduction.)

5.1 Reduction

The reduce function is the heart of the algorithm. Rather than maintaining a
global ‘work-list’ of redexes, as Appel and Jim do, reduce(initial , e) reduces any
new redexes created inside e (but none that are created above e in the expression
tree). initial is boolean flag indicating whether this call to reduce originates from
contract rather than some other recursive call. If reduce(initial , e) is invoked on
an expression node which is not a redex, then no action is performed. The reduce
function also returns a boolean to indicate whether a reduction took place. As
we shall see, this is necessary in order to detect the triggering of new reductions.
We now expand the definition of reduce.

reduce(initial , e) = case !e of
(letfun f(x) be m in n) ⇒

if non-rec-uses(f) = ∅ then
splice n in place of e
reduceOccs(cleanExp(m))
return true

else if rec-uses(f) = ∅ and non-rec-uses(f) = {f ′} then
let focus = parent(parent(f ′))
case !focus of
(app(f ′, a) ⇒

splice n in place of e
splice m in place of focus
let (occs , redexes) = substAtom(x, a)
reduceOccs(occs ∪ cleanExp(a))
reduceRedexes(redexes)
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return true
( ) ⇒ return false

else return false
(let x be �val(v)� in n) ⇒

if uses(x) = ∅ then
splice n in place of e
reduceOccs(cleanExp(parent(v)))
return true

else if v is an atom a then
splice n in place of e
let (occs , redexes) = substAtom(x, a)
reduceOccs(occs ∪ cleanExp(parent(a)))
reduceRedexes(redexes)
return true

else case !v of
(pair(a, b)) ⇒

if initial then
let redexes = reduceProjections(e, x, a, b, uses(x))
if redexes = ∅ then return false
else

reduceRedexes(redexes)
reduce(false, e)
return true

else return false
(inji(a)) ⇒

if initial then
let (occs , redexes) = reduceCases(e, x, i, a,uses(x))
if redexes = ∅ then return false
else

reduceOccs(occs)
reduceRedexes(redexes)
reduce(false, e)
return true

else return false
( ) ⇒ return false

(let y be e′ in p) ⇒
let redexes = reduceCC (e, y, e′, p)
for e′′ ∈ redexes do reduce(false, e′′)
return true

( ) ⇒ return false

The first case covers β-reductions on functions, with two sub-cases:

– (→ .β0) If the function is dead, its definition is removed, the continuation
spliced in place of e, and any uses within the dead body deleted, possibly
triggering new reductions.
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– (→ .β1) If the function has one occurrence, which is non-recursive, it is
inlined. The continuation of e is spliced in place of e, the function body is
inlined with the argument substituted for the parameter, and the argument
deleted. Substitution may trigger further reductions.

The second case covers β-reductions on computations as well as some instances
of β-reduction on products and sums. It is divided into four sub-cases.

– (T.β0) If a value is dead, then its definition can be removed. The continuation
is spliced in place of e. Then the uses inside the dead function body are
deleted, possibly triggering new reductions.

– (T.βa) If a value is atomic, then it can be inlined. First the continuation of e
is spliced in place of e. Then the atom is substituted for the bound variable.
Finally the atom is deleted.

– (×.β) If a pair is bound to a variable x, and this is the initial visit of e,
then any projections of x are reduced. For efficiency, new projections will
subsequently be reduced as and when they are created.

– (+.β) This follows exactly the same pattern as ×.β-reduction. The only
difference is that the reduction itself is more complex, so can trigger new
reductions in different ways.

The third case deals with commuting conversions.
The algorithm ensures that the current reduction is complete before any new

reductions are triggered. Potential new redexes created by the current reduction
are encoded and executed after the current reduction has completed.
reduceUp(e) reduces above e as far as possible:

reduceUp(e) = if reduce(false, e) then reduceUp(parent(e)) else skip

reduceRedexes reduces a set of expression redexes, whilst reduceOccs reduces a
set of occurrence redexes:

reduceRedexes(redexes) = for each e ∈ redexes do reduceUp(e)
reduceOccs(xs) = for each r ∈ xs do

if isSmall(r) then reduceUp(parent(def (r))) else skip
isSmall(r) = r /∈ rec-uses(r) and |non-rec-uses(r)| ≤ 1

cleanExp(e) removes all occurrences and subexpressions inside e and returns a
set of occurrence redexes.

cleanExp(e) = case !e of
(r) ⇒

e := dead
return deleteUse(r)

(letfun f(x) be m in n) ⇒
e, f, x := dead
return cleanExp(m) ∪ cleanExp(n)

(app(a, b)) ⇒
e := dead
return cleanExp(a) ∪ cleanExp(b)

. . .
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Remark. Marking nodes as dead ensures that unnecessary work is not done on
dead redexes. A crucial difference between the imperative algorithms and the
improved quadratic one is that reduction in the former immediately detects new
redexes, whereas the improved quadratic algorithm only detects new (non-local)
redexes on a subsequent traversal.

deleteUse(r) removes r and returns a set of 0 or 1 occurrence redexes:

deleteUse(r) =
if r is already dead then return ∅
let s = nextOcc(r)
uses(s) := uses(s) − {r}
return {s}

nextOcc(r) =
let x = def (r)
if r is non-recursive then return s ∈ (non-rec-uses(x) ∪ {x})− {r}
else if r is recursive then return s ∈ (rec-uses(x) ∪ {x}) − {r}

reduceProjections(e, x, a1, a2, xs) reduces projections indexed by xs. e is an ex-
pression node of the form let x be val(pair(a1, a2)) in m, and xs is a subset of
the uses of x.

reduceProjections(e, x, a1, a2, xs) =
let redexes := ∅
for each s ∈ xs do

let focus = parent(parent(s))
case !focus of
(proji(s)) ⇒

splice a copy of ai in place of focus
redexes := redexes ∪ {parent(focus)}

( ) ⇒ skip
return redexes

All the projections in which a member of xs participates are reduced, and a set
of expression redexes is constructed. Each projection can trigger the creation of
a new T.βa-redex. For instance, consider:

let x be val(pair(a, b)) in let y be val(proj1(x)) in m

−→×.β let x be val(pair(a, b)) in let y be val(a) in m

−→T.βa
let x be val(pair(a, b)) in m[y := a]

reduceCases(e, x, i, a, xs) reduces case-splits indexed by xs. e is an expression
node of the form let x be val(inji(a)) in m, and xs is a subset of the uses of x.

reduceCases(e, x, i, a, xs) =
let occs := ∅
let redexes := ∅



Shrinking Reductions in SML.NET 153

for each s ∈ xs do
let focus = parent(parent(s))
case !focus of
(case s of (x1)n1 ; (x2)n2) ⇒

occs := occs ∪ cleanExp(n3−i)
deleteUse(s)
splice ni in place of focus
let (occs ′, redexes ′) = substAtom(xi, a)
occs := occs ∪ occs ′

redexes := redexes ∪ redexes ′ ∪ {parent(focus)}
x1, x2 := dead

( ) ⇒ skip
return (occs , redexes)

The structure of reduceCases is similar to that of reduceProjections. However, it
is slightly more complex because a single +.β-reduction inlines multiple atoms,
splices one branch of a case and discards the other. Discarding the branch which
is not taken gives a set of occurrence redexes as well as the expression redexes.

5.2 Substitution

substAtom(x, a) substitutes the atom a for all the uses of the defining occurrence
x. It returns a pair of a set of occurrence redexes and a set of expression redexes.

substAtom(x, a) = case (!a) of
(r) ⇒ substUse(x, r)
( ) ⇒

for each r ∈ uses(x) do
splice a copy of a in place of r
x := dead

return (∅, ∅)

This is straightforward for non-variable atoms, as it cannot generate new redexes.
In contrast, substituting a variable can trigger ×.β- and +.β-reductions.
substUse(x, r) substitutes r for all the uses of the defining occurrence x.

substUse(x, r) =
let xs = uses(x)
if r ∈ rec-uses(r) then

rec-uses(r) := rec-uses(r) ∪ xs
else if r ∈ non-rec-uses(r)

non-rec-uses(r) := non-rec-uses(r) ∪ xs
x := dead
let e = parent(def (r))
case !e of
(let y be val(�pair(a1, a2)�) in m) ⇒

for each s ∈ xs do def (s) := def (r)
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let redexes = reduceProjections(e, y, a1, a2, xs)
return (∅, redexes)

(let y be val(�inji(ai)�) in m) ⇒
for each s ∈ xs do def (s) := def (r)
let (occs , redexes) = reduceCases(e, y, i, ai, xs)
return (occs , redexes)

( ) ⇒ return (∅, ∅)

Substitution is implemented by merging two sets together. Concretely, this
amounts to the constant-time operation of inserting one doubly-linked circu-
lar list inside another. In addition, if x is bound to a pair, then projections are
reduced, or if x is bound to an injection, then case-splits are reduced.

6 Analysis

There are two obvious operations mapping terms from the functional to the
imperative representations, which we call mutify and demutify , respectively. We
have a semi-formal argument for the following:

Proposition 3. Let e be a term and e′ = (demutify ◦contract ◦mutify)(e). Then
e′ is a normal form for e.

The argument uses the invariants of Sect. 4, plus the invariant that the children
of the current node are in normal form. When new redexes are created, this
invariant is modified such that subterms may contain redexes, but only those
stored in appropriate expression redex sets or occurrence redex sets. It is rea-
sonably straightforward to verify that the operations which update the graph
structure do in fact correspond to MIL reductions. When contract terminates,
all the redex sets are empty and the term is in normal form.

6.1 Complexity Without Commuting Conversions

Although our approach of performing CCs on the way down the tree works
well in practice, the worst case time complexity is still quadratic in the size
of the term. We define a version of our algorithm contractβ which does not
perform commuting conversions. This is obtained simply by removing the call to
reduceCCs from contract , and the test for commuting conversions from reduce.

Proposition 4. contractβ(e) is linear in the size of e.

The argument is very similar to that of Appel and Jim [1] for their imperative
algorithm. Essentially most operations take constant time and shrink the size of
the term. The only exception is substitution. In the case where a non-variable is
substituted for a variable x, the operation is linear in the number of uses of x.
But it is only possible to substitute a non-variable for a variable once, therefore
the total time spent substituting atoms is linear. In the case where a variable
y is substituted for a variable x, the operation is constant, providing y is not



Shrinking Reductions in SML.NET 155

bound to a pair or an injection. If y is bound to a pair or an injection, then the
operation is linear in the number of uses of x. Again, once bound to a pair or
an injection, a variable cannot be rebound, so the time remains linear.

Crucially, this argument relies on the fact that back pointers from uses back
to defining occurrences are only maintained for pairs and injections. In our
SML.NET implementation we found that maintaining back pointers from all
uses back to defining occurrences does not incur any significant cost in practice.
Even when bootstrapping the compiler (∼ 80,000 lines of code) there was no
discernible difference in compile time. Maintaining back pointers also allows us
to perform various other rewrites including η-reductions. In the presence of all
back pointers, optimising the union operation to always add the smaller list to
the larger one guarantees O(n log n) behaviour. Using an efficient union-find
algorithm would restore essentially linear complexity.

6.2 Complexity with Commuting Conversions

Naively reducing commuting conversions can give quadratic behaviour. For in-
stance, consider the following (innermost first) reductions:

let xk be (let xk−1 be . . . let x1 be m1 in m2 in . . . mk) in n

−→∗ (S(k − 1) T.CC-reductions)
let xk be (let x1 be m1 in . . . let xk−1 be mk−1 in mk) in n

−→∗ (k − 1 T.CC-reductions)
let x1 be m1 in . . . let xk be mk in n

The total number of reductions is given by the recurrence: S(1) = 0, S(k) =
S(k − 1) + k − 1. This has solution S(k) = k(k − 1)/2. Assuming each of the
mis and n have constant size, then k is linear in the size of the term. Hence the
number of reductions is quadratic in the size of the term. If the contract function
directly performed these reductions, then it would also be quadratic.

Another problem is that +.CC-reductions can introduce ‘useless functions’:

let z be (let y be (case a of (x1)n1 ; (x2)n2) in m) in p

−→∗ letfun f(y) be m
in let z be case a of (x1)let y1 be n1 in app(f, y1)

; (x2)let y2 be n2 in app(f, y2)
in p

−→∗ letfun f(y) be m
in letfun g(z) be p

in case a of (x1)let y1 be n1 in let z1 be app(f, y1) in app(g, z1)
; (x2)let y2 be n2 in let z2 be app(f, y2) in app(g, z2)

The function g is useless in the sense that it is always applied to the re-
sult of applying f to an argument. One might hope that g be composed with f .
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If we change the reduction order, such that the commuting conversions are per-
formed outermost first, then it is:

let z be (let y be (case a of (x1)n1 ; (x2)n2) in m) in p

−→∗ let y be (case a of (x1)n1 ; (x2)n2) in let z be m in n

−→∗ letfun f(y) be let z be m in p
in case a of (x1)let y1 be n1 in app(f, y1)

; (x2)let y2 be n2 in app(f, y2)

Fortunately, given the limited ways in which commuting conversions can trigger
other reductions, the full imperative algorithm can get away with performing
commuting conversions outermost first, with an initial call to reduceCCse be-
fore recursively contracting e’s children. The operation reduceCCs(e) repeatedly
checks e to see if it is a CC-redex. If it is, then it performs the commuting
conversion, and iterates. If not, then it returns.

The previous example of quadratic behaviour due to commuting conversions
becomes linear with this reduction strategy. However, quadratic behaviour can
still arise through inlining functions that trigger further commuting conver-
sions:

letfun fk(xk) be let yk be app(g, xk) in app(g, yk)
fk−1(xk−1) be let yk−1 be app(fk, xk−1) in app(g, yk−1)

...
f1(x1) be let y1 be app(f2, x1) in app(g, y1)

in app(f1, a)

contract takes quadratic time to reduce this term. In order to get a linear number
of reductions, one would have to inline all the functions first, before performing
any commuting conversions.

7 Performance

We have extended our one-pass imperative algorithm contract to the whole of
MIL and compared its performance with the current implementation of simplify.
Replacing simplify with contract is not entirely straightforward, as all the other
phases in the pipeline are written to work on a straightforward immutable tree
datatype for terms, which is incompatible with the representation used in con-
tract. We therefore make use of mutify and demutify to change representation
before and after contract . Since both mutify and demutify completely rebuild
the term, they are very expensive – calling mutify and demutify generally takes
longer than contract itself. Ideally, of course, all the phases would use the same
representation. However, using two representations allowed us to compare the
running times of simplify and contract on real programs.
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Table 1. Total compile time (in seconds)

Benchmark Lines of SML/NJ MLton
code tsimplify tcontract tsimplify tcontract

sort 70 2.11 3.47 0.46 0.52
xq 1,300 13.1 14.4 2.46 1.76
mllex 1,400 11.6 16.0 2.39 2.03
raytrace 2,500 18.1 24.0 4.30 3.03
mlyacc 6,200 57.3 43.8 10.0 6.04
hamlet 20,000 219 156 43.7 26.2
bootstrap 80,000 1310 1190 289 221

Table 2. Shrinking reduction time (in seconds) under SML/NJ and MLton

Under SML/NJ Under MLton
Benchmark Total Breakdown Total Breakdown

simp mcd m c d simp mcd m c d

sort 1.00 2.00 0.87 0.70 0.43 0.22 0.11 0.02 0.07 0.02
xq 5.86 5.98 1.90 3.61 0.47 1.46 0.54 0.35 0.15 0.06
mllex 6.09 7.49 3.31 3.16 1.02 1.21 0.57 0.27 0.23 0.07
raytrace 9.32 11.8 5.16 5.44 1.17 2.13 0.65 0.37 0.19 0.09
mlyacc 33.2 20.0 9.42 8.60 1.94 5.63 1.26 0.68 0.37 0.21
hamlet 84.5 56.4 26.2 21.5 8.59 23.3 5.54 1.85 2.77 0.92
bootstrap 439 282 130 100 53.0 107 36.6 11.8 18.4 6.38

Table 1 compares the total compile times (tsimplify vs tcontract) of several
benchmark programs for the existing compiler, using simplify, and for the mod-
ified one, using demutify ◦ contract ◦ mutify. Table 2 compares the time simp
spent in simplify with the times m, c, d spent in each of mutify, contract and
demutify and their sum mcd. Each benchmark was run under two different ver-
sions of SML.NET. One was compiled under SML/NJ [12] and the other under
MLton [13]. Benchmarks were run on a 1.4Ghz AMD Athlon PC equipped with
512MB of RAM and Microsoft Windows XP SP1.

The first five benchmarks are demos distributed with SML.NET. The sort
benchmark applies quicksort to a list of integers; xq is an interpreter for an
XQuery-like language for querying XML documents; mllex and mlyacc are ports
of SML/NJ’s ml-lex and ml-yacc utilities; raytrace is a port to SML of the win-
ning entry from the Third Annual ICFP Programming Contest. The remaining
benchmarks are much larger: hamlet is Andreas Rossberg’s SML interpreter,
whilst bootstrap is SML.NET compiling itself.

Figure 4 gives a graphical comparison of both tables. On small benchmarks,
the current compiler is faster (tcontract/tsimplify). But for medium and large
benchmarks, we were surprised to discover that contract is faster than simplify,
even though much of the time is spent in useless representation changes. Under
SML/NJ, tcontract/tsimplify shows a decrease of nearly 30% in the total compile
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Fig. 4. Comparing contract with simplify

time in some cases; under MLton, there is a decrease of up to 40%. This is a
significant improvement, given that in the existing compiler only around 50%
of compile time is spent performing shrinking reductions. Comparing the actual
shrinking reduction times c and simp, contract is up to four times faster than
simplify under SML/NJ, and up to 15 times faster under MLton (on mlyacc).
The level of improvement under MLton is striking. Our results suggest that
MLton is considerably better than SML/NJ at compiling ML code which makes
heavy use of references.

As an exercise, one of the other transformations deunit , which removes re-
dundant unit values and types was translated to use the new representation.
The contract function is called before and after deunit , so this enabled us to
eliminate one call to demutify and one call to mutify . This translation was easy
to do and did not change the performance of deunit . We believe that it should
be reasonably straightforward, if somewhat tedious, to translate the rest of the
transformations to work directly with the mutable representation.

8 Conclusions and Further Work

We have implemented and extended Appel and Jim’s imperative algorithm for
shrinking reductions and shown that it can yield significant reductions in compile
times relative to the algorithm currently used in SML/NJ and SML.NET. The
improvements are such that, for large programs, it is even worth completely
changing representations before and after contract , but this is clearly suboptimal.
The results of this experiment indicate that it would be worth the effort of
rewriting other phases of the compiler to use the graph-based representation.

Making more extensive use of the pointer-based representation would allow
many transformations to be written in a different style, for example replacing
explicit environments with extra information on binding nodes, though this does
not interact well with the hash-consing currently used for types. We also believe
that ‘code motion’ transformations can be more easily and efficiently expressed.
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It is unfortunate that CCs and inlining conspire to produce quadratic com-
plexity. Sabry and Wadler’s study of CPS translations offers an interesting in-
sight [11]. In their variant of Moggi’s computational lambda calculus λc∗∗, terms
are in CC-normal form by definition, and β-reduction of an application is com-
bined with CC-normalisation of its enclosing let-expression: adopting this more
refined notion of redex may allow us to achieve linear complexity.

More speculatively, we would like to investigate more principled mutable
graph-based intermediate representations. There has been much theoretical work
on graph-based representations of proofs and programs, yet these do not seem to
have been exploited in compilers for higher-order languages (though of course,
compilers for imperative languages have used a mutable flow-graph representa-
tions for decades). With a careful choice of representation, some of our trans-
formations (such as T.CC) could simply be isomorphisms and we believe that
a better treatment of shared continuations in the other commuting conversions
would also be possible.
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Abstract.. This paper presents a library for the run-time construction
and specialisation of generic or polytypic functions. This library utilises
the type information that is available in dynamics to implement generic
functions on their values. The library closely follows the static generic
framework, both in its use and in its implementation. It can dynamically
construct generic operations ranging from equality, map and parsers to
pretty printers and generic graphical editors. A special feature of the
library is that it can also be used to derive meaningful specialisations of
generic functions that operate on the type representation of the dynamic.

1 Introduction

This paper is about constructing generic functions for dynamically typed values
(or shortly, dynamics). Let us first explain what we mean by generic functions
and dynamics.

In Generic Haskell [13] as well as in Clean [15] it is possible to define generic
functions [4, 8]. A generic function is an ultimate reusable function that allows
reflection on the structure of data in a type-safe way.

Once defined, a generic function can be applied on any value of any given
concrete static type. Generic functions can be used to define work that is of a
general nature. The technique has successfully been applied to define functions
like equality, map, fold , to construct parsers and pretty printers, to create GUI
applications [3] and to generate test data [10].

A generic function is actually not a single function, but rather a special kind
of overloaded function. To define a generic function, instances for the generic
function are defined for a finite number of type constructors. Given these base
instances, the compiler can fully automatically derive an instance for the generic
function for any given concrete static type.

Both in Haskell as well as in Clean one can use dynamics. Dynamics allow the
programmer to associate a run-time value with its type. The are some differences
between dynamics in Haskell and in Clean. In Clean dynamics are incorporated
in the language while in Haskell dynamics are made available via a library fa-
cility. Dynamics in Clean can be of polymorphic type, and one can do run-time
type unification using type pattern variables [14]. Furthermore, dynamics (even
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functions) can be serialised , stored to disk and read it in by some other running
application. In this way one can easily create persistency, type-safe plug-ins, and
mobile code [17]. The facility has been used to create a type safe functional op-
erating system [16] that uses a typed file system in which all files are dynamics
stored on disk.

Dynamics enable the type safe communication of data and code between
independently programmed distributed applications. It would therefore be very
nice if we would also be able to apply generic functions to a dynamic, in particular
to a “foreign” dynamic. In theory it should be possible to construct such a generic
function, since a dynamic contains information about its type.

The ability to construct such a generic function that can be applied on any
value of any type stored in a dynamic would give us new possibilities. For in-
stance, in our functional operating system we will be able to test the equality
of two (unknown) dynamics. It also means that if we receive a dynamic from
somewhere, we can automatically create a parser or pretty printer for it. From
that moment on, the operating system shell is able to recognise expressions of
the types involved.

Figure 1 gives an impression of what we want to achieve . The program at
the top writes a tree value in a dynamic to disk. This dynamic value is read
by the bottom application. Note that the Tree type is not available at compile
time in the bottom application. By using the library it is still possible to create
a graphical editor for the tree in the dynamic value.

data Tree α = Leaf | Node α (Tree α) (Tree α)
dyn = dynamic Node 1 Leaf Leaf :: Tree Int
main = writeDynamic ”d ”dyn

main = do
dyn ← readDynamic ”d”
doIO (edit ”Editor for any Dynamic” dyn)

'd'

Fig. 1. A dynamically constructed generic editor

In practice this means that all the conversions and constructions that are
currently done by the compiler at compile-time now somehow have to be ac-
complished at run-time. This is not so easy. A compiler can do full reflection
on the representation of types and terms, but a running application (Clean uses
compiled code) can only do some limited reflection on the representation of the
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types. Furthermore one has to be able to construct new functions at run-time.
The research question is: is it nevertheless possible to create generic functions
for dynamics? In this paper we explain how one can do it, and explain what
language facilities are needed to realise it.

The main contributions of this paper are:

– We show that that our library enables the construction of generic functions
at run-time in the same spirit as the well-known static generic translation
scheme (section 6 and 4);

– We show that our generic functions cannot only be used on the value part
but also on the type part of a dynamic (section 4).

The code and examples in this paper are presented in Haskell, because it is
more widely known. In any case, the differences are insignificant. The library
is implemented in Clean and available from the web-page that accompanies this
paper (http://www.cs.ru.nl/~ronny/DynGen/).

The remainder of the paper is organised as follows. In section 2 we briefly
recap the dynamic machinery. In section 3 we describe how a generic function
is statically defined in the language. Then we explain in section 4 how, with
help of our library, a generic function for dynamics can be constructed in a
very similar way as in the static case. The translation scheme for generics as
implemented in the compiler is illustrated in section 5. In section 6 we explain
how we manage to realise this translation scheme at run-time. In section 7 we
show some extensions, present example applications, and discuss the efficiency
of the library. After discussing related work in section 8, we end in section 9 with
conclusions and future work.

2 Dynamics

Dynamically typed values, or dynamics for short, combine a value with a repre-
sentation of its type [1, 15]. Here are some examples of dynamics.

twoDynamics :: (Dynamic,Dynamic)
twoDynamics = (dynamic 3 :: Int , dynamic id :: ∀α.α → α)

dynApply :: Dynamic → Dynamic → Dynamic
dynApply (dynamic f :: a → b) (dynamic x :: a) = dynamic f x :: b
dynApply = error “dynApply : type error”

The first alternative of dynApply only matches if the first dynamic argument
contains a function value and the second dynamic argument a value of a type that
matches the argument type of the function. This example shows how matching
on dynamic values involves dynamic unification of types. This guarantees that
the application f x is safe.

The type pattern variable in a dynamic can also arise from a type variable in
the signature of the function. Such a type variable is postfixed with an upward
arrow, as in the following two functions.
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toDyn :: ∀α.Typeable α ⇒ α → Dynamic
toDyn x = dynamic x :: α↑

fromDyn :: ∀α.Typeable α ⇒ Dynamic → α
fromDyn (dynamic x :: α↑) = x
fromDyn = error “type mismatch”

These so called type dependent functions [14] are overloaded in the type repre-
sentation of that type variable, indicated by the Typeable class. For example in
fromDyn the type of α is determined by the context in which the function is
used.

The dynamic system in Clean has more features that are not used in this
paper, but that do greatly enhance the applicability of dynamics. One can seri-
alise any dynamic (even functions) and store its value to disk or send it over to
another running application. Any other Clean application can read in or receive
such a dynamic. Clean uses compiled code which means that a dynamic linker is
required that is able to link in code to a running application [17].

2.1 Obtaining Additional Information About Dynamic Types

In Haskell access to the representations of types and data type definitions is avail-
able in the Data.Generics library that was developed to support the techniques
in the “Scrap your boilerplate articles” [11, 12].

In Clean, dynamics, patterns match on dynamics, as well as dynamic unifi-
cation are part of the language. Access to the representation of types and the
type definitions is therefore less important to the average Clean user. To realise
our library, we do need access to this type of information. The representation
contains all the information needed to construct the generic representation for
dynamic types at run-time. The actual representations of types and data types
in both Haskell and Clean differ from the one presented in this paper. We have
simplified it a bit to increase readability.

The following library functions are used to obtain additional information
about types. The typeOf function returns the representation of a type.

typeOf :: ∀α. Typeable α ⇒ α → TypeRep
data TypeRep

=TyCon TyCon | TyApp TypeRep TypeRep
| TyForAll VarId TypeRep | TyVar VarId

The function typeDefOf returns a representation of the data type.

typeDefOf :: TyCon → TyDef
data TyDef = AlgType {arity :: Int , conses :: [(Constr , [Type]]} |NoType

The Constr data type represents a data constructor from an algebraic type. It
supports the following operations.
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data Constr = — abstract type
instance show Constr
build :: Constr → Dynamic
match :: Constr → Dynamic

The function build returns a dynamic that contains the constructor. The
function match returns a dynamic with a function that matches on the con-
structor. For example for the Cons constructor in the List type these dynamics
have the following values.

buildCons = dynamic Cons
matchCons = dynamic λ l f x → case l of Cons h t → f h t ; → x

3 Generic Programming

This section describes the basics of generic or polytypic programming à la Hinze
[9]. Generic functions are defined on the sum-of-products structure of algebraic
data types. The following code shows the generic constructors from which the
generic structure is build and presents the generic structure for a user defined
list type.

data 1 = 1 — unit
data α × β = α × β — product
data α + β = InL α | InR β — sum

data List α = Nil | Cons α (List α) — user defined algebraic type
type List◦ α = 1 + (α × (List α)) — and its generic structure

In the full blown generic framework the generic structure is much richer with
information about data constructors and record fields (their name, arity, and so
on). This information is necessary for generic parsers and pretty-printers, but
we do not consider it further for clarity’s sake.

The remainder of this section illustrates how a programmer defines and uses
a generic function in the static generic framework. The running example is a
generic equality function that is used to compare two integer lists.

3.1 Define the Type Signature of the Generic Function

The generic equality function is defined as follows.

type Eq α = α → α → Bool
generic eq a :: Eq a

In this example there is only one generic variable before the double colon (a),
but in general there can be several. The type after the double colon can also be
polymorphic in other type variables. We do not consider higher-ranked types in
this paper, so all polymorphic variables must be quantified at the top level.
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3.2 Provide the Base Instances

The programmer provides each base instance by defining a function with the
name of the generic function subscripted with the name of the type constructor.

eqInt a b = a == b
eq1 1 1 = True
eq× eq1 eq2 (a1×a2) (b1×b2) = eq1 a1 b1 && eq2 a2 b2

eq+ eql eqr (InL a) (InL b) = eql a b
eq+ eql eqr (InR a) (InR a) = eqr a b
eq+ eql eqr = False

The number of arguments of a base instance depends on the arity of the type
constructor. For example, eq× receives equality functions for the first and second
elements of the pairs.

3.3 Specialise the Generic Function for a Particular Type

A specialisation is denoted by putting the type between braces after the name
of the generic function.

main = print (eq{List Int} (Cons 1 Nil) (Cons 2 Nil))

Here eq{List Int} is the specialisation of the generic equality function for lists
of integers. It is also possible to specialise for types of higher kind such as List
(kind ∗ → ∗). In this paper the type for which a generic function is specialised
is assumed to be monomorphic.

4 Dynamic Generic Library

In the previous section 3 we showed how to statically define and use a generic
equality function. Here we show how to do the same dynamically. For this pur-
pose the library offers a number of functions to construct a generic function
at run-time. Basically, we do the same steps as before. For each step a library
function is offered (defineGeneric, baseInstance, specialise). All definitions of the
dynamic generic function given so far are collected in an abstract type (GenFun).

data GenFun — abstract data type
defineGeneric :: Int → Type → GenFun
baseInstance :: TyCon → Dynamic → GenFun → GenFun
specialise :: GenFun → Type → Dynamic

We will demonstrate the use of each library function for the equality exam-
ple from section 2. Because several base instances have to be provided for any
generic function, we make the notation a little lighter with an infix variant of
the baseInstance function. It is defined as follows:
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(:+:) infixl 4
(:+:) :: GenFun → (TyCon, Dynamic) → GenFun
genFun :+: (tyCon, dyn) = baseInstance tyCon dyn genFun

Below we use the notation �a� as a short-cut for the representation of the
type a. For example �List Int� denotes typeOf (⊥ :: List Int). The same notation
is also overloaded to denote the representation of a type constructor. For exam-
ple �List� denotes the representation of the List type constructor. The context
always indicates which of the two variants is meant.

4.1 Define the Type Signature of the Generic Function

The first step is to provide the signature of the generic function. For the generic
equality it is:

defEq :: GenFun
defEq = defineGeneric 1 �∀a. Eq a�

The generic type variables and any other type variables are all bound by one
quantifier in the second argument of defineGereric. By convention, the generic
type variables are given first, and the integer argument indicates how many
generic type variables the function takes. In the example the first variable (a) is
the generic type variable.

4.2 Provide the Base Instances

After defining the type of the dynamic generic equality function, we extend it
by providing the base instances.

baseEq :: GenFun
baseEq = defEq :+: (�Int�, dynamic eqInt)

:+: (� 1 �, dynamic eq1 )
:+: (� × �, dynamic eq× )
:+: (� + �, dynamic eq+ )

Assuming that we already have a static generic function for equality defined,
the definition is rather straightforward. The instances of the static generic func-
tion eq can directly serve as the base instances for the dynamic generic equality.

This code shows that it can be tiresome to populate the generic function with
the base instances for all base and primitive types (we should also have provided
base instances for Float , Char , Bool). It may be useful to have some language
support to make it easier to add all available static base instances.

4.3 Specialise the Generic Function for a Particular Type

Finally we can apply our dynamic generic function to check if two dynamics are
equal.
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genEq :: TypeRep → Dynamic
genEq = specialise baseEq
main = print (genEq�List Int�

‘dynApply ‘ (dynamic Cons 1 Nil)
‘dynApply ‘ (dynamic Cons 2 Nil))

The example shows that using the dynamic generic library is very similar to
using the static generic framework. In the example above we made good use of
the static instances of the generic equality function to serve as the base instances
of the dynamic generic equality. However, it is also possible to use the dynamic
generic library without using the static generic framework.

5 Generic Translation

Before we explain how generic functions are constructed dynamically we first
review the static translation scheme as originated from Hinze [8].

We present the translation scheme by studying the code that the compiler
generates for our running example. The purpose of this exposition is to point
out the information that is needed to perform the translation and to get an idea
of the language features that are used in the generated code. In the next section
we will then see how this corresponds to the dynamic setting.

5.1 Overview

The compiler uses the following information for the translation scheme (readily
available from the compiler’s syntax tree):

– the signature of the generic function;
– the base instances for this generic function;
– the type for which the generic function has to be specialised;
– the type definitions of all types that appear in this type.

The remainder of this section describes the different parts of the translation:
the specialisation of the generic function for a type expression, the conversion
between values and their generic representation, and the derivation of the generic
function for an algebraic type.

5.2 Specialisation

The specialisation of a generic function for a specific type is an easy transfor-
mation. It is nothing more than replacing type constructors with the instance of
the generic function for that type, and replacing type application by term appli-
cation. For the specialisation of the generic equality function for list of integers
the compiler performs the following transformation.

eq{List Int} =⇒ eqList eqInt

The eqInt function was provided by the programmer (Int is a primitive type),
but the compiler must derive the eqList function. The remainder of the section
describes how this is accomplished.
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5.3 Equality on the Generic Representation

The first step is to specialise the generic equality function for the generic repre-
sentation type List◦, again by replacing each type constructor with the generic
instance for that type.

eqList◦ :: ∀α. Eq α → Eq (List◦ α)
eqList◦ a = eq1 ‘eq+‘ (a ‘eq×‘ eqList a)

5.4 Embedding Projection

We now have an equality function on the generic representation of lists, but we
need an equality function on lists. We can adapt one to the other by using a
so called embedding projection. Conveniently enough this embedding projection
itself can be implemented as a generic function. It has the following definition.

data α � β = EP {from :: α → β, to :: β → α}
generic ep a b = a � b

For the generic equality function only the conversion in one direction is needed
because the generic type variable occurs on negative positions (to the left of an
arrow), but to cover the general case we combine the conversions both ways.

The embedding projection for the equality function is the specialisation of
the generic function ep on the structure of signature of the generic function, in
our example the equality type α → α → Bool .

epeq :: ∀αβ. (α � β) → (Eq α � Eq β)
epeq a = a ‘ep→‘ (a ‘ep→‘ epid)

This specialisation deviates from the standard scheme in one place. The type
constructor Bool is replaced by epid (defined as {from = id , to = id}) instead
of epBool . In fact, the embedding projection for any type that does not involve a
generic type variable is the identity projection. With this observation the number
of embedding projections can be reduced.

The function ep→ composes the embedding projections for the argument type
and the result type.

ep→ arg res = EP (from arg o from result) (to result o to arg))

5.5 Conversion Functions

The implementation of the conversion functions from a list to its generic rep-
resentation and the other way around is a simple exercise in case distinction,
based on the algebraic structure of the type definition.

fromList :: ∀α.List α → List◦ α
fromList Nil = InL 1
fromList (Cons a b) = InR (a×b)

toList :: ∀α.List◦ α → List α
toList (InL 1) = Nil
toList (InR (a×b)) = Cons a b
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The two conversion functions are grouped by convertList .

convertList :: ∀α. List α � List◦o α
convertList = EP fromList toList

5.6 Derived Function

The last step in the derivation is to combine the specialisation on the generic
representation, the conversion function and the embedded projection for the
generic function.

adaptList :: ∀α. Eq (List α) → Eq (List◦ α)
adaptList = epfrom (epeq convertList)

eqList :: ∀α. Eq α → Eq (List α)
eqList a = adaptList (eqList◦ a)

Note that eqList is a recursive function (indirectly through eqList◦).

6 Dynamic Generic Translation

In this section we implement the dynamic generic library functions from section
4 by adapting the static generic transformations from section 5.

6.1 Basic Implementation

As can be seen from the type signatures in section 4, a GenFun value is passed
between the library functions. It contains information about the generic function
that was stored in the compiler’s syntax tree in the static translation scheme.
The abstract type is defined as a record with the following fields.

data GenFun = GenFun { arity :: Int
, signature :: TypeRep
, instances :: FiniteMap TyCon Dynamic
, ep :: Dynamic }

This record is created by the defineGeneric function that stores the arity and
the type signature, creates an empty map of instances and constructs the em-
bedding projection for the type signature. The specialiseEP function performs
the specialisation for the embedding projection of the generic type signature as
described in section 5.4.

defineGeneric :: Int → Type → GenFun
defineGeneric a s = GenFun { arity = a

, signature = s
, instances = emptyFM
, ep = specialiseEP a s}
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The baseInstance function adds an instance to the map of instances.

baseInstance :: TyCon → Dynamic → GenFun → GenFun
baseInstance tc dyn gf = gf {instances = addToFM (instances gf ) tc dyn}

Finally, specialise replaces all type constructors in the (monomorphic) type by
the corresponding instance and all type applications by dynApply (see section
2). This corresponds to section 5.2.

specialise :: GenFun → Type → Dynamic
specialise gf (TyApp t a) = dynApply (specialise gf t) (specialise gf a)
specialise gf (TyCon tc) = case lookupFM (instances gf ) tc of

Nothing → derive gf tc
Just inst → inst

This is a slight simplification of the actual library function that operates on a
State monad, adding newly derived instances to the finite map of instances in
the GenFun record.

Now all that is left to do is implement the derive function. We will do so in
the next section.

6.2 Functions

The dynamic function that derive has to construct corresponds to eqList in sec-
tion 5.6. Here we see the first problem: The static translation introduces new
function definitions. In the dynamic setting the dynamics can contain function
values and we can apply dynamics to other dynamics, but we cannot create new
function definitions.

To solve this problem we enrich the term language with lambda expressions
and variables.

data Dynamicλ = Term Dynamic |App Dynamicλ Dynamicλ

| Lambda Int Dynamicλ |Var Int

In this language we can construct the derived function (the λ subscripts indicate
that we are working in Dynamicλ).

deriveλ :: GenFun → TyCon → Dynamicλ

deriveλ gf tc = foldr Lambda (adapt ‘App‘ derived) varIds
where

typeDef =typeDefOf tc
varIds =[1..arity typeDef ]
adapt =Term (adaptorλ gf typeDef )
derived =foldl App deriveλ gf typeDef ) (map Var varIds)

The function derive◦
λ constructs the derived function for the generic representa-

tion of the type definition. As we have seen in section 5.2 this is simply a matter
of specialising the generic structure of the type definition. The function adaptorλ

is more difficult and we postpone its implementation to the next subsection.
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The enriched dynamics can be translated to regular dynamics by the well-
known bracket abstraction algorithm that removes all lambdas and variables
with the use of the S , K , and I combinators. These combinators can be defined
in our term language, because dynamics can contain polymorphic functions.

derive :: GenFun → TyCon → Dynamic
derive gf tc = bracketAbstract (deriveλ gf tc)

6.3 Pattern Matching

The function adaptorλ constructs the conversion function between values and
their structural representation. It corresponds to convertList in section 5.5. Here
the next problem appears.

The conversion function performs pattern matches. In the dynamic library
the constructors on which we have to match are not know until run-time. In the
previous function we showed how to dynamically introduce lambda expressions,
but our term language does not contain pattern matching or case distinction.

Instead we use the match functions (see 2.1) that can be applied to the
constructor info. This match function takes a value (a list in this example) and
a function that should replace the constructor. If the value matches, this function
is applied to the arguments of the constructor, otherwise it returns nothing. By
chaining the match functions for all the constructors in a data type we can build
the required conversion function.

6.4 Recursive Functions

There is one more hurdle to take. Recursive types lead to recursive functions in
the translation. This means that to derive an instance for a recursive type we
need the instance for this type. To escape from this loop we construct recursive
functions with the use of a fix-point combinator. We could also have introduced
the fix-points at the type level, this amounts to the same thing. The dynamic
fix-point operator has the following definition.

fix f = let x = f x in x
dynFix :: Dynamic
dynFix = dynamic fix :: ∀α.(α → α) → α

Unfortunately, this fix-point combinator can only express limited forms of recur-
sion. The type of fix shows that the recursive calls should all have the same type
as the function itself. On the type level this means that this method does not
work for non-uniform types, such as

data Nested α = One | Two (Nested (α, α))

In the static scenario instances for non-uniform types can only be expressed
because Haskell supports polymorphic recursion.

Perhaps these non-uniform types can be handled with more advanced fix-
point combinators, but the details have not been worked out.
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7 Applications and Extensions

We present some examples of the use of the library, describe some extensions
and discuss the efficiency of our solution.

7.1 Defining the Instance for Dynamic

In section 4 we saw how to derive an equality function to compare two dynamics.
In the example below this example is extended to define a base instance of the
static generic equality function for the type Dynamic.

eqDynamic x@(dynamic :: a) y@(dynamic :: a) = eqDyn �a� x y
where

convertDyn :: ∀α. Typeable α ⇒ α � Dynamic
convertDyn =EP toDyn fromDyn

eqDyn type =liftDynEq (genEq type)

liftDynEq :: Dynamic → Eq Dynamic
liftDynEq =λ(dynamic eq :: Eq a) → epfrom (ep{Eq} convertDyn) eq

eqDynamic = False

The first alternative of eqDynamic only applies if the two dynamics have a
matching type. In that case the representation of this type is used to specialise
the dynamic generic equality (with the function genEq from section 4.3). The
liftDynEq function transforms the equality function in the dynamic (type Eq a)
to an equality function on two values of type Dynamic. Such a lift function can
be defined for any generic function in a similar way.

7.2 Deriving a Generic Function for the Types

So far we have only looked at how the generic function can operate on the values
in the dynamics. But we also have to consider the type in the dynamic. A generic
pretty printer for dynamics should not only print the value in the dynamic, but
also its type.

generic pprint t :: t − > String
pprint (dynamic Cons 1 Nil :: List Int)

⇒ “dynamic Cons 1 Nil :: List Int”

A naive specialisation of the pretty printer for the representation of the type
gives the rather unsatisfactory result "TyApp (TyCon List) (TyCon Int)".

The library provides a function that helps in this situation.

specialiseForType :: [TypCon] → GenFun → Dynamic

In the case of the pretty printer the dynamic constructed specialiseForType
contains a pretty printer of type TypeRep → String , but it behaves as if it were
defined on the type universe that is formed by the list of type constructors.
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For example for the types Int , Bool and List this universe can be presented
by the following algebraic type.

data Type = Int | Bool | List Type

Note that Int , Bool and List are data constructors in this type.
The library function specialiseForType can be used for many other generic

functions. A parser for dynamics can first apply the parser generated with
specialiseForType to parse the type string. This parser delivers a representation
of the type which is then used to construct the parser for the value string. In test
data generation first a type can be generated and then a value of this type. The
graphical editor for dynamic values from the introduction can also be extended
so that the user can also edit the type as well as the values for that type.

7.3 Error Handling

So far we have ignored the errors that can occur during the dynamic construction
of generic functions. Compile-time errors from the static framework have become
run-time errors in our library and this means that all the library functions we
have used so far are inherently partial.

The defineGeneric function can fail if there is no embedding projection de-
fined for one of the type constructors in the signature of the dynamic function.
The baseInstance function can fail if the type of the function in the dynamic
does not correspond to the type signature of the dynamic function. The specialise
function can fail if the instance for a type cannot be derived, for example because
it is an abstract type.

The library provide versions of all the functions that return proper error
codes in case something goes wrong. Because of the explicit manner in which
the generic functions are constructed in the library, the application programmer
can use the error codes to recover from the situation.

7.4 Efficiency

The efficiency of the dynamically constructed generic functions is in the same
order as the efficiency of unoptimised static generic functions. The construc-
tion of functions with combinators may seem costly, but under graph rewriting
semantics each introduced combinator is only evaluated once.

A compiler does have more optimisation opportunities. Fusion for example
has proved to be powerful enough to completely remove the overhead of the
construction of the generic representation of values for most generic functions
[5, 6]. This optimisation is not possible in our dynamic setting. The library cannot
analyse the base instances that are provided by the programmer, because these
dynamics contain compiled code.
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8 Related Work

Earlier work by one of the authors [2] can be seen as a prequel to the present
paper. In that paper the representation of types is also used implement generic
function on dynamics, but it assumed compiler support to generate many of the
functions that are constructed at run-time in the current approach. The system
was limited to generics function with one generic variable.

Cheney and Hinze [7] combined dynamics and generics from the outset. Their
implementation is lightweight in the number of language features that are used.
The dynamics already contain values with the generic structure and the pro-
grammer has to write the conversions functions between values and their generic
representation. The dynamics in the current paper contain the actual values with
sharing fully preserved, which makes them more efficient.

The “Boilerplate” articles [11, 12] use the same run-time information about
types and type definitions to build generic traversal schemes. Because this infor-
mation is present in dynamics the traversal schemes can also be applied to the
values in dynamics. The library presented in the current paper makes the ap-
proach from Generic Haskell or Clean available for dynamic values, but the library
does require a more powerful dynamic typing system (dynamics with polymor-
phic types and run-time unification). Many functions can be implemented with
either system and experience will have to show which approach is more conve-
nient in what situation.

9 Conclusions and Future Work

We have developed a library in Clean that enables a programmer to create an in-
stance for a generic function for values of typeDynamic.Adynamic can contain any
value of any type which can both be inspected at run-time using a pattern match.
Dynamics can be stored on disk or send to another application over the internet.

Using our new library, one is now able at run-time to apply generic functions
on dynamics of any value and (almost) any type. Such a dynamic might even have
been created by other applications. One cannot only apply “consuming” generic
functions like equality and pretty printing, but also typical “producing” generic
functions like parsers. Furthermore, one cannot only define generic functions on
values but one can define generic functions on their types as well. It is possible,
for example, to create a generic editor to edit a type stored in a dynamic. It can
be used to compose a new type using the available ones. Now one can create
another generic editor to construct a value of this newly constructed type.

The library is very easy to use for someone familiar with the static generic
approach. The definition of a dynamic generic function can be given in a very
mechanical way. It is even imaginable that the dynamic definition can be created
automatically by a compiler from the static description.

The library is implemented in Clean. The implementation actually provides a
run-time variant of the static generic transformation scheme as implemented in
the Clean compiler. To realise this, one among others has to be able to construct
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new functions at run-time. We have accomplished this by using bracket abstrac-
tion. For dealing with recursive types one has to be able to construct recursive
functions for which we have used a fix-point combinator. Currently we can only
deal with uniform recursive types.

In principle it should be possible to adopt our library for Haskell if the dy-
namic typing system would be more powerfull. Our solution needs dynamics that
contain polymorphic types and run-time unification.

In the future we would like to investigate if it is possible to remove the current
restriction that dynamic generic functions cannot be applied to non-uniform
recursive types. Furthermore we want to create some larger applications to test
the library. Feedback from our users is highly appreciated.
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Abstract. This paper develops a language for reasoning about con-
current functional I/O. We assume that the API is specified as state-
transformers on a single world state. We then prove that under certain
conditions evaluation in this language is deterministic, and give some
examples. All properties were machine-verified using the Sparkle proof-
assistant and using Core-Clean as a meta-language.

1 Introduction

In pure functional languages, I/O is usually achieved using some method of
explicitly sequencing actions on the external world (monads [13]; unique types
[1]). However, solutions to I/O tasks are sometimes more easily expressed and
understood when written in a style that allows for the specification of concurrent
I/O.

“All I/O operations [are] strictly sequenced along a single “trunk”. Some-
times, though, such strict sequencing is unwanted.” [13]

In Clean [14], a limited form of concurrent I/O is permitted. The unique type-
system allows the global world state to be “split” into distinct parts resulting
in, for example, a file and the rest of the file system. This leaves the relative
ordering of actions on each distinct part of the global-state unspecified, but
since the regions are distinct, evaluation still remains deterministic.

Concurrent Haskell [12], on the other hand, introduces powerful concurrency
primitives into the language. Processes may perform I/O, fork and communicate
with one another. Although this has many practical uses, it has the unavoidable
effect of introducing non-determinism.

In this paper we introduce a small language with monad-like constructs which
is designed for reasoning about the effect of concurrency in state-based functional
I/O. We then show how given some pre-conditions on the state and some ex-
tra run-time checks we call contexts one can loosen the explicit sequencing of
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actions without introducing non-determinism. The resultant language is rather
dynamic in nature, requiring more run-time checks. However, it does provide
greater flexibility compared with the strict sequencing of I/O actions currently
required by Haskell if we wish to retain deterministic behaviour.

1.1 This Paper

Section 2 introduces our state-based model of I/O, APIs and contexts. Section 3
then implements a non-deterministic language with monad-like I/O and a fork
concurrency primitive, and Section 4 proves that under certain specific conditions
the language is confluent with respect to evaluation. Finally, Sections 5 and 6 give
detailed examples of contexts being used to allow safe concurrency on separate
parts of the one file system.

We use Core-Clean as a meta-language for implementing the API, mod-
elling global-state and sequencing I/O actions. Our only axioms are pieces of
Clean/Core-Clean code. Proofs were all machine-verified using the Sparkle proof-
assistant [4], a semi-automated LCF-style proof-assistant designed specifically for
reasoning about Core-Clean. Core-Clean supports a large subset of the function-
ality of the Clean programming language, including parametric polymorphism
and strictness annotation – but not I/O, hence the need for meta-proofs.

This work generally builds on existing research by the authors [2, 6, 5] into
examining how the different ways of expressing (functional) I/O affect our ability
to do formal reasoning. We use Clean to model the language, but our results are
in no way bound by Clean’s actual implementation.

1.2 Related Work

An enormous amount of literature has been published on the subjects of con-
currency, state and I/O in functional languages. Most of it has only a limited
relevance to our work, which is concerned, ultimately, with the semantics of I/O
with a view to proving useful properties about actual programs.

For us, state is strictly global with a fixed interface. This distinguishes our
work from literature on memory allocation, deallocation and sharing. When
explicit concurrency is mentioned with reference to functional languages, it usu-
ally includes inter-process communication and other typically non-deterministic
constructs (for example, the CCS-style approach adopted in [12]). Most math-
ematical results concerning functional I/O tend to be high-level and axiomatic
(monads and monad-transformers [11]; using CCS to structure the ordering of
actions [7]). In general, the specifics of actual APIs are ignored.

Deterministic concurrent I/O in functional languages has, however, been
studied before. This has mainly been in implementation-driven attempts to pro-
vide a smoother I/O interface: the Clean file system API [14]; some implementa-
tion techniques for deterministic concurrency [3]; state-splitting using a special
form of lazy functional state-thread [9]. Building models of the specifics of the
I/O system is not new either [10, 8]. As with our approach, these systems are
also state-based.
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Nonetheless, this paper, as far as we know, is the first to tackle the semantic
issues of concurrency in state-based I/O, incorporating a full-blown formal model
of the global state as part of the language’s semantics. Our results also have been
machine verified.

1.3 A Note on Sparkle and Clean

Occasionally we modify the actual Clean syntax in this paper to make up for
small shortcomings in Sparkle. In the actual Clean code: functions are usually
used in an uncurried fashion; records are replaced with tuples; lambda abstrac-
tions are replaced by named functions; Chars are replaced with Ints.

Sometimes strict tuple and strict list types are used:

:: STup a b = STup !a !b
:: SList :a = SCons !a !(SList a) | SNull

For the purposes of clarity, we change these types to !(a,b) and ![a] respec-
tively, retaining the names of the standard operations (fst, length etc.)

The benefit of using Sparkle is that lazy functional semantics are already
encoded within the theorem prover. We only need to wrap the pure language in
a small exterior which allows I/O to be expressed. Any small pitfalls concern-
ing name-capture, strict/lazy semantics or the Hindley-Milner type system will
(hopefully) be detected automatically.

One disadvantage of using Sparkle is that it is not ideal for modelling a
world-state. For example, there is, as of yet, no facility for modelling sets easily
in Sparkle. Also, since we are always reasoning about actual programs which
may not terminate, all types must necessarily contain a bottom element.

We use Clean syntax, but it is mostly very similar to that of Haskell. The
most obvious difference is that a type a -> b -> c in Haskell is written as
a b -> c in Clean.

2 State-Based I/O and Contexts

In this paper we incorporate a fork-like primitive into I/O in a functional lan-
guage. To introduce concurrency without causing non-determinism we must be
able to isolate certain classes of legitimate I/O actions which don’t interfere with
one another. Only actions with this property can be performed concurrently.

The solution is based around contexts. A context identifies a set of permitted
actions. Each program fragment is executed within a particular context and,
along with the global state, it affects what the program does and is allowed to
do. If the current context forbids certain actions then any attempt to execute
these actions will result in a catchable run-time error.

2.1 Modelling I/O

To talk about non-interference we resort to an entirely state-based model of I/O.
The meaning of each action is defined as a state-transformer on some global state.
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Similarly, we regard the meaning of a whole program as being the resultant effect
it has on global state.1

An instance of the Clean record type IOSystem defines both the semantics
of each I/O action and how concurrency can be performed.

:: IOSystem v a p w c :== { af :: a w -> (w,v)
, ap :: c a -> Bool
, pf :: p c -> (c,c)}

The above structure – three functions parameterised by five types, and one
additional pre-condition which we discuss below – is enough to formally model
an I/O system with deterministic concurrency. The following subsections explain
each component in turn.

2.2 af – The Semantics of Actions

The function af :: a w -> (w,v) models the effect of each action on the world
state. The type w is that of the world, or global state. a is the API, with each
element identifying an I/O action that can be performed. Type v denotes return
values. This is typically a sum type capable of storing Ints, Bools, Chars or any
other value that an action needs to return.

For any action a, af a :: w -> (w,v) defines the state-transformer for that
action.

2.3 ap - Contexts and Non-interference

Contexts are denoted by the type c and the meaning of each context is defined
by ap :: c a -> Bool. ap c a is a Bool which indicates whether action a is
permitted by context c. A context c can be thought of as the set of actions a
such that ap c a = True.

The original purpose of contexts was to isolate certain groups of actions
which don’t interfere. We can say that two actions al and ar won’t interfere
with one another if, for all world states, the order in which they are performed
is irrelevant. This is expressed as al ||| ar:

al ||| ar
�= ∀w.∀w2.∀vl.∀vr

(∃w1.af al w = (w1,vl) ∧ af ar w1 = (w2,vr))
⇔
(∃w1.af ar w = (w1,vr) ∧ af al w1 = (w2,vl))

1 This means that any two non-terminating programs become indistinguishable – a
rather worrying problem. The CCS approach to modelling I/O [12] doesn’t suffer
from this, however, and since we see no immediate reason why one can’t have the
best of both worlds, this will be a topic of future work.
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Now we can define two important relations on contexts:

c1 ||| c2
�= ∀a1.∀a2.ap c1 a1 ∧ ap c2 a2 =⇒ a1 ||| a2

c " c1
�= ∀a.ap c a =⇒ ap c1 a

c1 ||| c2 states that for all actions a1 permitted under context c1 and for
all actions a2 permitted under context c2, the ordering of actions a1 and a2 is
irrelevant. c " c1 states that if an action is permitted to run in context c then
it will also be permitted in context c1.

||| is symmetric and " is a pre-order – both by definition.

2.4 pf - Enforcing Non-interference

Assume that we have modelled our API and created a set of contexts which
model all the different permissions a program might well be allowed to have. We
would now like to guarantee that if a program running in context c performs a
fork which results in two programs with contexts cl and cr, then

1. neither process will interfere with one another: cl ||| cr.
2. neither process will be capable of performing an action forbidden by the

enclosing parent context: cl " c ∧ cr " c.

We solve this problem by defining a function pf :: p c -> (c,c), which
we assume obeys that very pre-condition:

PREaf,ap,pf
�= ∀c.∀cl.∀cr.∀p. pf p c = (cl,cr) =⇒ cl ||| cr ∧ cl " c ∧ cr " c

A value of type p is an extra parameter which gives the programmer some
flexibility with regard to how he wishes the current context to be split. If a
program is running in context c, the programmer forks supplying the value p,
and pf p c = (cl,cr), then the new left- and right-hand processes will execute
in contexts cl and cr respectively. When both of these terminate, the execution
of the parent process will continue again in context c.

To prevent visual clutter, for the rest of the paper we assume the existence
of some implicit IOSystem called saf,ap,pf. We assume this defines the functions
af, ap and pf, and binds the types v, a, w, c and p. Unless stated otherwise, all
results generalise over all of these values.

3 A Language with Concurrent I/O

In this section we define a language which implements concurrency as described
in the previous section in a functional style.

3.1 Syntax

The language is defined directly in Clean. Programs are elements of the higher-
order algebraic data-type Prog v a p.
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:: Prog v a p = Bind (Prog v a p) (v -> Prog v a p)
| Ret v
| Act a (Prog v a p)
| Par p (Prog v a p) (Prog v a p) (v v -> v)

Ret and Bind are similar in spirit to Haskell’s monadic return and >>=
respectively. Ret v returns v without changing the global state. Bind m f per-
forms m, and if m terminates with some resultant value v, it then performs the
program f v. The program Act a m performs action a if it is permitted in the
current context. If it isn’t permitted it runs program m instead, where m would
typically act as a sort of exception handler, providing an alternative return value
indicating that the action wasn’t allowed. Par p ml mr vf runs ml and mr in
parallel, splitting the context as determined by p. If both ml and mr terminate
with values vl and vr respectively, the whole program yields a return value vf
vl vr.

Since we are using a normal algebraic type, the type signatures of the four
constructors are quite a lot weaker than we would like – especially those of Bind
and Par. The upshot is that all return values must be an element of the same
fixed type v.

These problems could be solved using an extra type variable to indicate the
program’s resultant return type (as opposed to the return type of actions) and
some existential typing. We don’t do this. One reason is that Sparkle has no
facilities for reasoning about existential types. More importantly, the problem
doesn’t really limit the flexibility of our results. Since the type-variable v isn’t
constrained in any way, intuitively it can be made polymorphic. The only reason
that we use an algebraic type at all is to make explicit the fact that there are
four and only four ways of constructing a Prog.

3.2 Single-Step Reduction Rules

We define the operational semantics for the language at a high level of abstraction
using non-deterministic single-step reduction.

We use the following syntactic sugar, choosing infix notation for Bind, Par
and the function vf :: v v -> v.

ml

∗ p

‖ mr
�= Par p ml mr (∗)

m$=f
�= Bind m f

w � m −→c w1 � m1
�= “program m with world-state w may single-step

reduce under context c to program m1 with
world-state w1.”

The seven reduction rules can be found in Figure 1.
The first two refer to the interaction between Ret and Bind: evaluation al-

ways proceeds (recursively) from left to right. The third and fourth describe
the behaviour of Act a m as described above. The final three rules refer to
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concurrency. The first of these states that when both sides are finished then
the parallel execution of both has finished. It is the final two rules which intro-
duce non-determinism into the single-step semantics: if the left-hand-side or the
right-hand-side can be reduced then any arbitrary one may chosen.

w � Ret v�=f −→c w � f v (1)

w � m −→c w′ � m′

w � m�=f −→c w′ � m′�=f
(2)

af a w = (w′,v′) ap c a = True

w � Act a m −→c w′ � Ret v′ (3)

ap c a = False

w � Act a m −→c w � m
(4)

w � (Ret vl)
∗ p

‖ (Ret vr) −→c w � Ret vl ∗ vr

pf p c = (cl,cr) (5)

w � ml −→cl w′ � m′
l

w � ml

∗ p

‖ mr −→c w′ � m′
l

∗ p

‖ mr

pf p c = (cl,cr) (6)

w � mr −→cr w′ � m′
r

w � ml

∗ p

‖ mr −→c w′ � ml

∗ p

‖ m′
r

pf p c = (cl,cr) (7)

Fig. 1. Single-Step Reduction Rules

3.3 Implementation

We implement single-step reduction as a Clean function which modifies the pro-
gram/state pair given the context it has to be reduced in. However, the above
language aims to leave the order in which concurrent actions are performed un-
specified. Since we are reasoning about an implementation in a deterministic
language like Core-Clean it is necessary to emulate this randomness or lack of
knowledge. One approach might be for the reduction function to return a list
containing the possible resultant programs after single-step reduction. Instead,
the solution we chose was to supply an extra argument to the single-step reduc-
tion function.

:: Random :== ![Bool]

next :: (IOSystem v a p w c) c Random (Prog v a p, w) -> (Prog v a p, w)

next implements single-step reduction. The extra argument mentioned is of
type Random and acts as a sort of random number generator. One individual
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Random (that is, strict list of Bool2) is consumed for each single-step reduction
– one boolean value for each syntactic level of parallelism. The boolean values
are only referred to when a non-deterministic choice needs to be made between
reducing the left- or right-hand-side of a parallel computation. If it’s False, go
left; if it’s True, go right. If the list isn’t long enough the evaluator just defaults
to the value False.

We can now define the implementation of single-step reduction by existen-
tially quantifying over the possible Random values.

w � m −→c w1 � m1
�= ∃r.r �= ⊥ ∧ next saf,ap,pf c r (m,w) = (m1,w1)

3.4 Evaluation

Evaluation is the process of continually single-step reducing a program until it
becomes a single value of the form Ret v. Although we can write a function
which does just that, in order to prove properties formally we must be precise
about the number of reduction steps required.

:: Random2 :== ![Random]

rdce :: Int (IOSystem v a p w c) c Random2 (Prog v a p,w)->(Prog v a p,w)

rdce iterates the single-step reduction function next a specific non-negative
number of times. It requires a value of type Random2 (a strict list of Random) as
a parameter because each application of next on its own needs a fresh Random.
With every iteration another Random is consumed from the list, defaulting to []
if the list is exhausted.

Like with reduction, we again define some more syntactic sugar.

w � m
c

� 〈v, w1〉 �= ∃q.q �= ⊥ ∧ ∃i.rdce i saf,ap,pf c q (m,w) = (Ret v,w1)

w � m
c

⇓ 〈v, w1〉 �= ∀q.q �= ⊥ =⇒ ∃i.rdce i saf,ap,pf c q (m,w) = (Ret v,w1)

The first, w � m
c

� 〈v, w1〉, states that w � m may possibly evaluate
to w1 � Ret v in context c, depending on which non-deterministic choices are

made. w � m
c

⇓ 〈v, w1〉, on the other hand, is stronger. It states that w � m
always evaluates to w1 � Ret v in context c (which, of course, if true, implies
that it possibly can). It is the second, stronger property which we want and the
purpose of the confluence proof is to show that if PREaf,ap,pf holds then the two
are in fact the same: if a program can evaluate to some resultant state then it
won’t ever do anything else.

2 An infinite, lazy stream of Bool might seem more appropriate but this isn’t the
case. Laziness also introduces partiality and we then need a messy pre-condition on
every stream ensuring that each individual Bool is defined. With a strict list r we
get this condition automatically by asserting simply that r �= ⊥.
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Quiteoftenweneedtobeexplicitaboutthenumberofreductionstepsperformed.
In these situations we annotate the evaluation with that number, as follows:

w � m
c

�i 〈v, w1〉 �= ∃q.q �= ⊥ ∧ rdce i saf,ap,pf c q (m,w) = (Ret v,w1)

w � m
c

⇓i 〈v, w1〉 �= ∀q.q �= ⊥ =⇒ rdce i saf,ap,pf c q (m,w) = (Ret v,w1)

3.5 Failure

Since the language’s semantics and individual programs contain arbitrary func-
tions, it is clear that reduction can fail or not terminate. We define failure simply
to be the case that no number of reduction steps would ever yield a single value.
It can happen in a number of different ways:

– An action fails - that is, for some action a, ap a w = ⊥.
– When running program m$= f , f doesn’t terminate when applied to m’s

return value.
– A program is syntactically ill-defined. For example: ⊥

∗ p

‖ ⊥.
– The functions ap and pf happen to return ⊥.
– The program loops infinitely, continually performing I/O actions.

4 Proving Confluence

In this section we show that if PREaf,ap,pf holds then the non-deterministic
single-step semantics are confluent with respect to program evaluation. In other
words, the arbitrary choices made when reducing any given program have no
effect on the resultant global-state and return value.

The full confluence proof is large and requires many smaller results. Only the
more important ones are shown below.
Lemma 1. If PREaf,ap,pf holds and single-step reducing a program is successful,
either it didn’t change the world-state at all or it performed a single action which
was permitted by that program’s context.

Proof. Structural induction over Prog3. The only way the world-state can be
changed is by performing an action. Because of the properties guaranteed by
PREaf,ap,pf, no forbidden action can be performed at a deeper lever which might
have been forbidden at the top level.

Lemma 2.

PREaf,ap,pf ∧ (∃p.∃c.pf p c = (cl,cr)) =⇒
(∃w1. w � ml −→cl

w1 � ml1 ∧ w1 � mr −→cr
w2 � mr1)

⇔
(∃w1. w � mr −→cr

w1 � mr1 ∧ w1 � ml −→cl
w2 � ml1)

3 This isn’t usually possible. On this one occasion we have no need to reason about f
in a program of the form m�=f .



186 M. Dowse, A. Butterfield, and M. van Eekelen

If two contexts don’t interfere then the order in which one single-step reduces
those two program in the different contexts is irrelevant.

Proof. A direct application of Lemma 1 and the non-interference properties guar-
anteed by PREaf,ap,pf. If both both ml and mr performed an action then their
order was irrelevant.

Lemma 3.

PREaf,ap,pf ∧ (∃p.∃c.pf p c = (cl,cr)) =⇒
(∃w1. w � ml

cl

�il
〈vl, w1〉 ∧ w1 � mr

cr

�ir
〈vr, w2〉)

⇔
(∃w1. w � mr

cr

�ir
〈vr, w1〉 ∧ w1 � ml

cl

�il
〈vl, w2〉)

The evaluation order of two programs in two non-interfering contexts is irrele-
vant.

Proof. Induction over both il and ir. Each single-step reduction in ml is, in turn,
exchanged with the other reductions in mr so that it happens after mr instead
of before it, applying Lemma 2.

Lemma 4.

w � m$=f
c

�i 〈v2, w2〉

∃i1.∃v1.∃w1.i1 ≥ 0 ∧ w � m
c

�i1 〈v1, w1〉 ∧ w1 � f v1

c

�i−i1−1 〈v2, w2〉

If m$=f evaluates with some specific reduction order then there exists a specific
reduction order for m which yields a value v1 and another reduction order for
f v1 which, together, has the same resultant effect.

Proof. Induction on i. The initial Random2 list, which determines the reduction
order, is effectively sliced into two parts. The first part is the ordering for m, the
second that for f v1.

Lemma 5.

w � m
c

⇓i1 〈v1, w1〉 w1 � f v1

c

⇓i2 〈v2, w2〉

w � m$=f
c

⇓i1+1+i2 〈v2, w2〉

If evaluation of m is confluent, always returning value v1, and f v1 is also
confluent, then so is the evaluation of m$=f .

Proof. Induction on i1.
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Lemma 6.

w � ml

∗ p

‖ mr

c

�i 〈v, w2〉 ∧ PREaf,ap,pf ∧ pf p c = (cl,cr)

=⇒

∃i1.∃vl.∃vr.∃w1.

⎛
⎜⎝

i1 ≥ 0 ∧ v = vl ∗ vr ∧
w � ml

cl

�i1 〈vl, w1〉 ∧
w1 � mr

cr

�i−i1−1 〈vr, w2〉

⎞
⎟⎠

If ml

∗ p

‖ mr evaluates with some arbitrary reduction order then there exists a
reduction order for ml and a reduction order for mr such that executing both
separately, one after the other, has exactly the same effect.

Proof. Induction on i. We split the Random2 list used for both ml and mr,
filtering the Random values into two separate lists depending on which of the two
sub-programs received each value originally.

Lemma 7. if pf p c = (cl,cr) and PREaf,ap,pf,

w � ml

cl

⇓il
〈vl, w1〉 w1 � mr

cr

⇓i−il−1 〈vr, w2〉 i ≥ 0

w � ml

∗ p

‖ mr

c

⇓i 〈vl ∗ vr, w2〉

If evaluation of ml and mr are both confluent on their own when run sequentially

in two non-interfering contexts cl and cr, then ml

∗ p

‖ mr is also confluent when
run in an enclosing context c.

Proof. Induction over i. Depending on the random values, each reduction step
in the parallel computation may pick either to reduce ml or mr. If it’s ml it is
relatively easy. If mr has to be single-step reduced we must show that reducing
it once at the start is no different to doing it after ml has been fully evaluated.

One awkward technicality is the proof that failure propagates sensibly: if
neither ml nor mr fail, then it must be shown that failure cannot occur at a
higher level either, regardless of reduction order.

Theorem 1. Confluence
if PREaf,ap,pf, then w � m

c

�i 〈v, w1〉 =⇒ w � m
c

⇓i 〈v, w1〉

Proof. Strong induction over i. The base case, i = 0, is trivial since m is just
a value. In the inductive case we perform case analysis on the three different
recursive constructors (Bind, Act and Par). For each constructor, we

1. Decompose w � m
c

�i 〈v, w1〉 into the separate, sequential evaluation of
m’s constituent sub-programs.
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2. Apply the inductive hypothesis, thus guaranteeing that the different sub-
programs are confluent when run in isolation. (The number of reduction
steps in each sub-program must be strictly less than i – and in this case it
always is.)

3. Show that the confluence of reduction is preserved when the sub-programs
are executed as individual parts of the one program again.

Proving this for Act is not difficult. For Bind, steps 1 and 3 above are performed
by Lemmas 4 and 5, and for Par, by Lemmas 6 and 7.

Corollary 1. If PREaf,ap,pf, then if a program can fail, it always will.

Proof. By contradiction. If it didn’t always fail, then it would for some reduction
order succeed in evaluating, and therefore, by confluence, always evaluate.

5 An Example: A File System

5.1 Design Criteria

We want the file system to contain a potentially infinite number of files, each
file containing any finite amount of data. Files can be opened for shared reading
with multiple read-pointers, as well as (non-shared) reading and writing. Files
can also be created and deleted.

The design and implementation of the file system is also influenced by the
fact that we want the behaviour of certain actions to be independent of one
another. Most notably:

– Actions on different files.
– Actions on different read-handles of the same file.

The model is not meant to be industrial strength. Nonetheless, we would like
to think that it is a plausible simplification, capturing many reasonable everyday
properties one would expect of a real file system.

5.2 File System State

The FS type models our file system:

:: FS :== MapN (Maybe FData)
:: OpenSt = Closed | Open ![Maybe Ptr] | ReadWrite !Ptr
:: Hnd = ReadH !Nam !FileDes | WriteH !Nam
:: Maybe a = Just !a | Nothing

:: FData :== !(Data,OpenSt) :: Data :== ![Char]
:: MapN d :== Nam -> d :: Nam :== Int
:: FileDes :== Int :: Ptr :== Int

A file system is a mapping from names to Maybe FData - a file either doesn’t
exist or has a FData associated with it. File data itself consists of a (strict) list
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of characters and an OpenSt which indicates whether the file is closed, open for
(shared) reading or open for both reading and writing.

If it’s open for reading then the file maintains a list of active pointers. This
list grows with each new shared-read. Each time a handle is closed it is replaced
by Nothing, and if all handles have been closed then the entire file is then
closed. If the file is open for writing then it just stores the one pointer. Once files
are opened, they are accessed via handles of type Hnd. This structure contains
enough information to find out where the required file-pointer is stored within
the global-state.

5.3 File API and Return Values

There are fourteen primitive file system actions in our API, which we encode
as an algebraic type. As in [5], we trim the meaning of each action down to its
bare, logical minimum. That is: lots of actions, each doing a very specific task.

:: FSAction = FOpen Nam Bool | HClose Hnd | FClose Nam | HRead Hnd

| HWrite Hnd Char | HNext Hnd | HEOF Hnd | HRewind Hnd

| HValid Hnd | FIsOpen Nam | FIsRead Nam | FCreate Nam

| FDelete Nam | FExists Nam

Seven of the fourteen actions act on handles (which themselves refer to specific
files); the others just act on filenames.

Each action can return information using the dynamic return type RV.

:: RV = RInt !Int | RChar !Char | RBool !Bool | RHnd !Hnd | RNull

We also define two useful look-up functions with the following types and the
obvious definitions.

actNam :: FSAction -> Nam hndNam :: Hnd -> Nam

5.4 Defining a State-Transformer

The common patterns of behaviour to do with non-interference mentioned above
are much easier to guarantee and reason about if they are enforced directly.

We can be certain that two actions on different pieces of global state don’t
interfere if:

– They only modify their own piece of global state.
– Both their resultant return value and the way that they modify the state is

solely determined by the action’s own parameters and the original value of
that piece of local state.

For this reason, all API-calls are modelled as state-transformers on individ-
ual files. Additionally, API-calls on file-handles are (mostly) modelled as state-
transformers on individual file-pointers (for one specific file).
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Actions on Individual Files. The meaning of each action is given by a func-
tion of type (Maybe FData) -> (Maybe FData, RV). This is converted into a
state-transformer on FS with the function liftMapN (the details are omitted).

liftMapN :: !Nam (d -> (d,r)) (MapN d) -> (MapN d, r)

Lemma 8. if n1 �= n2, then, for any two state-transformers f1 and f2, the
execution of liftMapN n1 f1 and liftMapN n2 f2 is order independent.

Proof. Relatively easy in the absence of failure. The definition of liftMapN must
strictly evaluate the local state before and after the (local) state-transformer is
applied to guarantee that failure propagates symmetrically.

Actions on Individual Pointers. Certain actions only modify the value of
one pointer in a file, the identity of that pointer being determined by a handle.
These actions may examine the contents of that file, but cannot examine the
values of any other file-pointers. This interface is enforced using liftPtrsMapN.

liftPtrsMapN :: (![Char] (Maybe Ptr) -> (Maybe Ptr, r)) Hnd ->
(Maybe FData -> (Maybe FData, r))

Lemma 9. If h1 and h2 are both read-handles referring to the same file but
referring to different pointers, then the execution of liftPtrsMapN f1 h1 and
liftPtrsMapN f2 h2 is order independent.

Proof. Not too difficult, but does require a library of standard strict list theo-
rems.

5.5 Implementing the API

Finally, we build the full API state-transformer afFS using the liftMapN func-
tion. An individual API-call may also employ liftPtrsMapN.

To save space we just show the implementation of FOpen and HRead.4

afFS :: FSAction FS -> (FS,RV)

afFS a w = liftMapN (actNam a) (actFn a) w

actFn :: (Maybe FData) -> (Maybe FData, RV)

actFn (FOpen n b) = fOpen_ n b

actFn (HRead h) = liftPtrsMapN hRead_ h

actFn (HWrite h c) = // .....

fOpen_ :: !Nam Bool (Maybe FData) -> (Maybe FData, RV)

fOpen_ n False (Just (cs,Closed)) =

(Just (cs, Open [Just 0]), RHnd (ReadH n 0))

4 The HRead action is a little different to a normal POSIX-style read. It only reads the
character - to increment the file pointer afterwards one must then use HNext.
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(Just (cs, Open ps++[Just 0]), RHnd (ReadH n (length ps)))

fOpen_ n True (Just (cs,Closed)) =

(Just (cs, ReadWrite 0), RHnd (WriteH n))

hRead_ :: ![Char] (Maybe Ptr) -> (Maybe Ptr, RV)

hRead_ cs (SJust p) = (SJust p, RChar (cs!!p))

5.6 Resultant Properties

The above file system partially defines an IOSystem with type variables v, a
and w bound to RV, FSAction and FS respectively. The function afFS gives the
semantics of each action.

The file system implementation obeys two important properties.

Lemma 10. If actNam a1 �= actNam a2, then a1 ||| a2

Proof. A direct consequence of Lemma 8.

Lemma 11. If a1 and a2 are actions which act on the same file but different
read-pointers, then a1 ||| a2

Proof. The actions HRead, HEOF, HNext, HRewind are straightforward (using
Lemma 9) since they are defined directly using liftPtrsMapN. HValid and
HClose are a little special and require more work.

6 File System Contexts

6.1 Partitioning Contexts on Files

A simple but useful example is to identify contexts with sets of files that a
program is allowed to access. The context is a map from Nam to Bool – a look-up
table used to determine if files of a particular name can be accessed.

:: CEasy :== MapN Bool
:: PEasy :== [Nam]

apEasy :: CEasy FSAction -> Bool
apEasy c a = c (actNam a)

pfEasy :: PEasy CEasy -> (CEasy,CEasy)
pfEasy p c = (\n -> c n && not (isMember n p),

\n -> c n && isMember n p)

Lemma 12. PREafFS,apEasy,pfEasy

Proof. The properties cl " c and cr " c are trivial ((c n && not (isMember n
p)) and (c n && isMember n p) both imply (c n)). The property cl ||| cr is
proved by first showing that any respective left- and right-hand action al and ar

fOpen_ n False (Just (cs,Read ps)) =
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permitted by these contexts can’t act on the same file. (If it did, that filename
simultaneously would and would not be an element of the list p.) Once we know
this, use Lemma 10.

The lemma proved above guarantees confluence. The program Par ns ml mr vf
runs programs ml and mr in parallel. It attempts to give mr access to as many of
the files referred to in ns as possible. ml is allowed to access any remaining files.

6.2 Example of File-Based Partitioning

Figure 2 gives a small example of file-based partitioning.
The program totalLength ns calculates concurrently the sum-total of the

lengths of each of the files named in list ns. If one filename appears twice in ns,
only one process will be able to access it. If a file is “locked-out” by the current
context, fileLength will simply return 0.

totalLength :: [Nam] -> Prog RV FSAction PEasy

totalLength ns = foldr (\n1 m1 ->

Par [n1] m1 (fileLength n1)

(\(RInt i1) (RInt i2) -> RInt (i1+i2))

(Ret (RInt 0)) ns

fileLength :: Nam -> Prog RV FSAction PEasy

fileLength n =

Bind (Act (FOpen n) (Ret RNull))

(\v -> case v of

RNull -> Ret (RInt 0) // (if file access is denied)

RHnd h -> Bind (fileLenLoop n 0)

(\l -> Bind (Act (HClose h) undef) (\_ -> Ret l)))

// keep incrementing the handle, counting the length.

fileLenLoop :: Hnd Int -> Prog RV FSAction PEasy

Fig. 2. Computing File Lengths

6.3 Shared Reads

The context data doesn’t have to just include what files the programmer is
allowed to access. It can also be modified to include information about what
specific actions the programmer is allowed to perform on those files.

By modifying the contexts to incorporate information about which specific
handles one is allowed to read from, a limited kind of shared reads are permitted.
It is limited because an FOpen on one file cannot run concurrently with any action
on that file – all read-handles must be opened before any concurrency takes place
at all. The problem is that while contexts can enforce a property such as “don’t
allow a HRead read from handle h”, it can’t be expected to enforce a property
like “don’t permit a FOpen to run if it possibly could return a handle h”.
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So the current file system model is slightly inadequate. However, by modifying
it a little so as to separate the creation of a handle from the opening of a file,
this problem should be avoidable. This will be the subject of future work.

7 Conclusions and Future Work

We have developed a language for expressing and reasoning about state-based
I/O with concurrency. By adding contexts to the language it can be shown that
with certain pre-conditions concurrent evaluation is deterministic.

Future work shall involve more sophisticated and realistic I/O models, includ-
ing models of non-state-based I/O such as stream I/O. Stream I/O is perhaps
the most pressing issue since at the moment two concurrent sub-programs are
unable communicate with one another. Also important is the ability to prop-
erly distinguish non-terminating programs. Two other possible future directions
are the development of Hoare-like proof rules for reasoning about languages with
context and an investigation into whether types could be used to statically check
some of the run-time properties required by contexts.
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Abstract. A general homomorphic overloading in a first-order type sys-
tem is discussed and its attendant subtype inference problem is formu-
lated. We propose a computationally efficient type inference algorithm
by converting the attendant constraint-satisfaction problem into the al-
gebraic path problem for a constraint graph weighted with elements of
a specially constructed non-commutative star semiring. The elements of
the semiring are monotonic functions from integers to integers (including
±∞) with pointwise maximum and function composition as semiring op-
erations. The computational efficiency of our method is due to Kleene’s
algebraic path method’s cubic complexity.

1 Introduction

The concept of homomorphic overloading (h-overloading for short) is not com-
pletely new, although to the best of our knowledge it has not been laid into the
foundations of any type system before. The original idea probably goes at least
as far back as Reynolds’s paper [6], where he remarked that ”the key to ensur-
ing that implicit conversions1 and generic operators mesh nicely is to require
a commutative relationship between implicit conversions and homomorphisms”.
To illustrate this, consider the following example. Let a generic operator f be
defined on two types: f1 : a1 → b1 and f2 : a2 → b2, and let also a1 � a2 and
b1 � b2. Under such conditions, the operator application f x is naturally am-
biguous. Indeed if x : a1 it has the type a2 as well so then which of the results
f1 x or f2 x is expected? The usual principle is to choose the least type, i.e. that
of f1, so the result is (f1 x) : b1. However this is coercible to b2 which gives rise
to the question: what is the relationship between the value of f1 x raised to the
type b2 and the value of f2 x?

Reynolds suggests that the results for so overloaded operators must be the
same. For instance, if we consider, following [6], +1 : (int, int) → int and +2 :
(real, real) → real we find that x +1 y coerces to type real to give precisely the
value of x+2y (assuming that the available range of integers can be represented as
floats without rounding, which is usually the correct assumption). It is easy to see
that in this example the coercion from integer to real serves as a homomorphism
from (int,+) to (real,+), hence our term “homomorphic overloading”. Paper

1 i.e., coercions.
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[6] does not treat this homomorphism as a vehicle of type inference, but rather
as a category-theoretical basis for formal semantics of a language that includes
generic operators and coercions. By contrast, our concern is exactly the former.

In [4] we showed that a primitive form of h-overloading, where the type
signature was constrained to fixed supertypes and subtypes of participating type
variables, allowed fast type inference in the presence of unknown external types.
The resulting types were inferred as explicit functions of the external types
using the longest path algorithm on a constraint graph. We further showed the
utility of h-overloading by giving an example of a language for stream processing
that benefited from it. However, our solution was not generic, as it limited the
variety of overloaded operators to a very restricted set of “offset-homomorphic”
operators with a special type signature. Thus arbitrary h-overloading was not
supported, in particular, there was no provision for arbitrary user-defined generic
operators.

In this paper we shall lift restrictions on the h-overloaded signatures, which
will make user-defined families of h-overloaded operators possible, while retain-
ing the original complete inferability of types shown in [4]. We will introduce a
combined overloading scheme which uses h-overloaded types within archetypes,
which are groups of types belonging to disjoint subtyping hierarchies. This makes
it possible to combine general type checking with automatic inference of homo-
morphic types.

The rest of the paper is organised as follows. In the next section we will re-
view some of the basic concepts of the homomorphic type theory. Section 3 will
introduce a new abstraction for defining type constraints: a star semiring of in-
teger functions. We shall re-formulate the type inference problem as an algebraic
path one and will find the solution to the former in terms of the latter. Section
4 focuses on the solution algorithms and implementation issues. Section 5 dis-
cusses recursion issues that arise when combining several modules into programs.
Related work is presented in Section 6, and finally there are some conclusions.

2 H-Overloading

Before introducing homomorphic overloading formally, we must note that h-
overloading does not need to be the only overloading mechanism in a language
that benefits from it. Indeed, one important reason to use overloaded operators is
to avoid the proliferation of notation by reusing symbols based on their informal,
mnemonic aspect. Where h-overloading is possible, it can be left implicit since,
as we shall show, its disambiguation is always automatic and computationally
efficient. By contrast, non-homomorphic overloading requires explicit declara-
tions of type (or class of types, as in Haskell) since genuine ambiguity may arise
when the program context does not constrain the choice of an overloading tightly
enough. Using another of Reynolds’s examples, if ‘+’ were to denote both string
concatenation and arithmetic addition, an assignment such as a := b+c, without
further type constraints, would leave the type ambiguous, requiring an explicit
declaration of type. H-overloading of the numerical instances of ‘+’ would enable
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generic declarations like a, b, c : numeric rather than requiring, for example, a
more specific (and restrictive) a, b, c : int but it would not eliminate type decla-
rations completely, since the possibility for a, b and c to be of string type cannot
be ruled out automatically.

Thus we consider types as being qualified by an ‘archetype’ specification,
which is explicitly declared and is not subject to inference (although it is, of
course, subject to type checking in a standard way). Here by archetype we
mean a set of all subtypes of a well-defined type. For instance, numbers form an
archetype with the usual subtyping into integers, reals and complex numbers;
pairs of numbers form an archetype which contains a lattice of subtypes, etc.

One archetype may qualify several so-called type attributes at the same time.
For instance, numerical arrays can be assumed to have the following attribute
structure:

narray(etype, rank),

where narray is an archetype of numerical arrays, which is declared, etype is
the type of the array element taken from the subtyping hierarchy int � real �

complex and rank is the number of array dimensions taken from the hierarchy
0 < 1 < . . . < rmax, where the coercion from lower to higher rank is achieved
by infinite replication of the corresponding array in the extra dimensions. This
archetype was assumed in [4] in defining a stream processing language, where
all operators were overloaded homomorphically in etype and rank. Another ex-
ample could be the string archetype: text(len), where len is the maximum size
of the string, with obvious subtyping. Our subtyping scheme is, at the mo-
ment, first-order as we do not allow functional subtyping, the reason being that
contravariance of function-argument types destroys the semiring construction
described in Section 3, making type inference inefficient. This circumstance pre-
vents our typing scheme from being used in a general functional language. We
do nevertheless take full account of contravariance of non-functional types, mak-
ing our approach applicable to first-order, single assignment languages, such as
SAC[12] and ASTL[11]. Here contravariance manifests itself in the downward
coercion of a left hand side of an assignment and is the reason that the least
type of a variable is required to be sufficiently high.

In the rest of the paper, we shall assume the archetype qualifiers of all
(sub)expressions in a program to have been deduced from the archetype dec-
larations and the program text, so that they can be omitted from type signa-
tures without creating an ambiguity. We also assume that two types can be in
a subtype relation only if they come from the same archetype; in this sense
all archetypes are disjoint. An n-ary operator is assumed to act on the Carte-
sian product of types, on which subtyping is defined in the standard way, i.e.
component-wise.

Our focus will be on the inference of the least permissible types in a program
where all operator overloadings are required to satisfy the following

Homomorphism Restriction. For any (overloaded) operator F , an instance
F2 : a2 → b2 is said to be homomorphic to an instance F1 : a1 → b1 iff a1 " a2,
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b1 " b2 and (∀x : a1)b21F1x = F2a21x, where a21 is the type coercion a1 → a2

and b21 is the coercion b1 → b2. For any overloaded operator F and any pair
of its instances F1,2 having identically qualified signatures, one instance must be
homomorphic to the other.

Proposition 2.1. The set of identically qualified instances of an overloaded
operator that satisfies the homomorphism restriction is linearly ordered.

This follows from the fact that homomorphism is an antisymmetric relation,
which is also transitive since the coercions are compositional, i.e. (∀t1t2t3 : t1 "
t2 " t3)c31 = c32 ◦ c21, where cij is the coercion tj → ti). Note that the linear
order of instances induces a linear order on the operand and result subtypes. This
does not mean that the subtyping structure of an archetype must be a chain; it
only has to contain a chain for every overloaded operator family defined on it.
Thus, different operator families can potentially use different chains within the
archetype without violating the homomorphism restriction. For any h-overloaded
n-ary operator family F with k instances, we will write its type signature as
follows: F : ω1 × ω2 × . . . ωn → ω0, where all ωi are chains of length k in their
respective archetypes. The potential confusion with the type signature of a single
operator where ωi are sets of values will be avoided by using small Greek letters
only for chains of types. A type signature in this form does not by itself define the
relationship between the output type of the operator family and its input types,
it only defines the ranges of those types within their corresponding archetypes.

The homomorphic restriction has two important consequences. Firstly, it
completely disambiguates operator application: F x can always be interpreted
as the application of the lowest instance of F compatible with the type of x. If
the programmer meant a higher instance and applied a further operator to the
result assuming that type, this is not a problem, since the result of applying the
lower instance is coercible to the output type of the higher one, yielding exactly
the same value.

Secondly, since Proposition 2.1 places the input and output types on chains
in subtyping orders, in any well-typed expression the output type chain ω1 of
an operator F1 belonging to the expression must mesh with the input chain ω2

of the next operator F2 up the expression tree. This means that, firstly, the
output archetype of F1 should be the same as the input archetype of F2, which
is not our concern since the archetype checking is assumed to have been done.
Secondly, at least one element of ω1 must be a subtype of some element of ω2

so that the result of F1 can be coerced to an input type of F2. Let xmax be the
greatest element of ω1 coercible to ω2:

xmax = max
ω1

{x | (∃y ∈ ω2)x " y} .

Then the operator F1 can be restricted (without loss of generality) to just those
overloadings for which the output type is at most xmax. On the other hand F2

can be restricted, also without loss of generality, to just those overloadings for
which the input type is at most xmax (for arity 1). Similar conditions must be
satisfied in all operands of F2 if its arity is greater than 1. Finally, a coercion
map c : ω′

1 → ω2 can be constructed:
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⊥

xmax

y1

y2

x1

x2

F1 output 
F2 input 

Fig. 1. Meshing type chains

c x = min
ω2

{y | x " y} ,

where
ω′

1 = {x | x ∈ ω1 ∧ x " xmax} ,

and inserted between F1 and F2. It is obvious from the existence of xmax that
for any x ∈ ω′

1 the set on the right-hand side is nonempty, and so the function
is well-defined. It is also easy to see that c x is a non-decreasing function. Figure
1 gives an example of two meshed chains, where their common archetype is a
lattice. The coercion map is depicted by curvy arrows: c⊥ = ⊥, c x1 = y1 and
c x2 = c xmax = y2

Another source of coercion is occurrences of program variables. When a vari-
able occurs in a contravariant context, e.g. on the left-hand side of an assignment,
the context defines a type chain (corresponding to the top-level operator on the
right-hand side) and the type of the variable must be upwards of an output type
belonging to that chain. The latter will be subject to type inference and is a
priori unknown. Since there can potentially be several contravariant contexts in
the program involving the same variable, the variable type must be the least
upper bound of the corresponding output types.2 The variable may also occur
in a covariant context, at which point the type derived from the contravariant
contexts will be coerced up to the least member of the input type chain assumed
by that covariant context.

The difference between meshing a variable with an operator and meshing
two operators is subtle. The procedure exemplified in fig 1 effectively maps a
chain onto another chain preserving the order, whereas in the case of variable-
to-operator meshing, the least upper bound of the elements of the output chains

2 Note here, that these may arise in single assigment context, iff multiple assigments
to disjoint parts of structured data such as arrays are supported.
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is represented as a partially ordered subset of the archetype. A coercion map
has to map this partially ordered subset onto the input chain of its associated
operator. There is a useful factorisation, however, which reduces this kind of
meshing to the previous kind. Let us consider the following example program

x := F (x,y);
...
x := G y

where F : α1×α2 → β, G : α3 → γ, the type of x, tx is given by tx & (b�g), where
b ∈ β, g ∈ γ are the (unknown) output subtypes of the operators. Note that
depending on the shape of the β and γ chains within their common archetype,
the least upper bound of b and g can sweep an arbitrary bounded subset, which
does not have to be a chain.

For illustration, let us insert coercion functions into the program explicitly:

x := CxF F (CFx x, CFy y)
...
x := CxG G (CGy y)

Obviously, the output type of CFx is

min
α1

{w | w & (b � g)} = max(min
α1

{w | w & b},min
α1

{w | w & g}) ,

which can be simplified to maxα1(cbb, cgg) where cb and cg are coercion maps
of the kind discussed earlier. Observe that the agreement in type only involves
operator output types, b and g with the type of the variable x being directly
dependent upon them. Thus the types of program variables can be eliminated
from the typing scheme; the output type variables of the corresponding top-level
operators hold sufficient information.

In the general case the dependency of an input type of an operator on the
output types of other operators via a variable has the form maxn

i=1(fi xi) for
some n, where fi is a map from a specific output chain to the common input
chain. This construction is very important as it makes it possible to replace fi by
functions mapping a chain offset (which is a nonnegative integer representing the
distance of a particular type along the chain from its bottom end) onto a chain
offset. One can then reason about types solely in terms of those offset numbers.
This follows from the factorisation exemplified above, i.e. from the fact that for
any chain ω in a partial order P and any bounded set S ⊆ P

min
ω
{x | x � (

⊔
S)} = max

ω
{By | y ∈ S}

where B : P → ω is given by

Bx = min
ω
{y | y & x}

provided that such Bx exist.
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Crucially, under h-overloading, a similar type representation exists for the
operators themselves with respect to their multiple operands. It is given by the
following

Proposition 2.2. For any homomorphically-overloaded n-ary operator F :
(a1, a2, . . . , an) → b, the output type offset b̂ can be expressed as a function
of the input type offsets âi as follows:

b̂(â1, â2, . . . , ân) = max(f1â1, f2â2, . . . , fnân) ,

where fi : Ii → I0 are some non-decreasing functions, 1 ≤ i ≤ n, Ii = [0, ki] is
the offset range of the ith operand, ki is the type offset of the highest overloading
in the ith operand relative to the lowest overloading operand type, and I0 = [0, k0]
is the output type offset range, with k0 the difference between the maximum and
the minimum output types along the subtype chain.

The proof of Proposition 2.2 follows from the observation that each operand
separately demands a certain lowest overloading, and that it is also compatible
with all overloadings higher than that one. Consequently, the least output type
corresponds to the highest demand, which explains the maximum in the formula.
The non-decreasing nature of the functions fi comes from the fact that raising
the type of ith operand along its chain can only make it too high for the current
overloading and hence demand a higher one, with a higher output type.

For convenience, we extend the function domains so that Ii = I0 = Z ∪
{−∞,+∞} = Z

∞ for all i and assume that (∀x < 0, i)fix = −∞ and (∀x >
ki, i)fix = +∞. The latter assumption models a type error by yielding an in-
finitely high supertype when the input type range is exceeded, and the former
one is motivated by the semiring construction in Section 3. We shall call func-
tions such as fi and the above-mentioned coercion map c type maps when they
are expressed in offset form Z

∞ → Z
∞. The range of x ≥ 0 in which f x < ∞ is

the carrier of the type map f . Since our type maps are based on finite subtype
chains, we shall assume that all carriers are finite. The set of all such functions
will be denoted as F below.

To summarise, the type analysis of a program written in a language with
h-homomorphic operators breaks down into the following stages:

1. analysis of the explicit archetype declarations contained in the program.
2. analysis of the operator definitions, including the structure of h-homomorphism

within each archetype.
3. archetype checking throughout the program
4. determination of coercion maps induced by meshing, with a subsequent con-

version into offset form; elimination of variables by connecting co- and con-
travariant occurrences by type maps.

5. recording of all type signatures and converting them into offset form; record-
ing of the type maps.

6. subtype inference

Type checking in a language with explicit declarations is well known and does
not present a problem. Hence the first three tasks on the list are straightforward.
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Item 4 has been explained in previous sections as well as item 5. It is the last
stage, item 6, that presents a major challenge, which we focus on in the next
section.

3 Subtype Inference

The language. To illustrate the subtype inference algorithm, we shall introduce a
simple single-assignment language, which models some features of both SAC[12]
and ASTL [4] (as well as possibly other single-assignment languages where sub-
typing can be introduced) that are relevant to the type inference method pro-
posed. The syntax of the language is given in figure 2, where a single module is
defined. A complete program is a set of modules.

〈module〉 → function 〈name〉 ( 〈par-tuple〉 ) 〈body〉
〈par-tuple〉 → 〈var〉 [ , 〈var〉]*
〈body〉 → 〈assig〉 [ ; 〈assig〉]*
〈assig〉 → 〈var〉 [ 〈selector〉] := 〈exp〉
〈exp〉 → 〈var〉 | 〈op〉 〈exp-tuple〉 | 〈function〉 〈exp-tuple〉
〈exp-tuple〉 → ( 〈exp〉 [ , 〈exp〉]* )

〈function〉 → 〈id〉

Fig. 2. The model language

A module defines a function whose body is a set of assignments. An as-
signment assigns the value of the right-hand side to the object signified by the
left-hand side. The optional selector defines which part of the object has been
assigned a value, for example which index of an array. All such parts are required
to have the same subtype, i.e. the data structure is assumed to be homogeneous.
There is a semantic constraint that the the selectors applied to the same variable
define the partitioning of that variable associated object, i.e. the selected parts
are disjoint and the coverage is complete, hence a single-assignment semantics is
assured. SAC achieves this by syntactic means (with a static guarantee), whilst
ASTL has a dynamic check for the singleness of assignment, but these details
are irrelevant to subtype inference. All that is important for the treatment below
is that

1. the same variable can be used repeatedly on the left-hand side of assignment
representing different parts of a homogeneous data structure;

2. all these occurrences are type-contravariant, i.e. τvar ≥ τRHS

3. all occurrences of a variable on the right-hand side are covariant, i.e. τvar ≤
τop where τop is the maximum subtype that the operator applied to the
variable in the right-hand side allows it to have.
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Each operator < op > is predefined with a homomorphic subtype signature
defined by Proposition 2.2. Function calls name the function to be called explic-
itly, and all functions are assumed to be first-order. Function subtype signatures
are not required to be provided by the programmer but are inferred in the process
of subtype inference.

A primary constraint set Subtype inference begins with associating fresh type
variables with all subexpressions in the program. In our case, these variables
represent type offsets from Z

∞ rather than type values for the reasons explained
earlier. For every operator occurrence, the operator type maps are invoked to
produce a type constraint in the form:

v0 =
n

max
i=1

(fivi) ,

where vi, i = 0 . . . n are any of the type variables just introduced. The con-
straints can be broken down into a set of simpler constraints in what we shall
call canonical form:

∀n
i=1τ0 ≥ fi τi ,

on the assumption that the minimum type assignment is sought. All canonical
constraints in a program constitute the primary constraint set. This set can be
assumed to contain exactly one constraint for every pair of types a and b. Indeed,
if there are two constraints between these types, a ≥ f1 b and a ≥ f2 b, then they
can be replaced by an equivalent constraint a ≥ f1⊕2 b, where for all x ∈ Z

∞,
f1⊕2 x = max(f1 x, f2 x) = (f1 ⊕ f2)x. (We denote the operator of the pointwise
maximum of two functions by ⊕.) On the other hand, if there are no constraints
between a and b, then the constraint a ≥ 0b can be added, where 0 : Z

∞ → Z
∞

such that for all x ∈ Z
∞, 0x = −∞. Thus one can speak of an n× n constraint

matrix Cij defining the primary constraint set for n type variables. Each element
of Cij is the function Z

∞ → Z
∞ that occurs in the constraint between types xi

and xj in canonical form.
Note that some of the type variables are associated with program variables

which are external to the program unit being compiled and which are, conse-
quently, not subject to inference. The purpose of type inference is to express the
least type of each program variable as a function of those external types.

Constraint set expansion The simplest type inference procedure would be to
initially assign 0 to all type variables associated with internal variables, and
then iterate the constraint set until a fixed point is reached or a type variable
acquires the value of infinity. In matrix form, we seek a solution to the constraint
satisfaction problem x = C x as a fixed point of the iterative process:

x[0] = 0; x[k+1] = C x[k] .

Here C x denotes
⊕n

i=1 Cij xj .
The procedure is sound, since at each iteration it delivers a lower bound of

all types implied by the primary constraint set. Also, due to the non-decreasing
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nature of all matrix elements of C, at each iteration which does not deliver a fixed
point, it produces an increased lower bound for at least some type variables. Since
the carriers of all matrix elements are finite, a fixed point exists and is reachable.
Obviously, the constraint set is satisfiable iff none of the lower bounds delivered
at the fixed point is infinite.

This solution has two potential problems. First of all, the number of iterations
is only bounded from above by the total length of all type chains, since at each
iteration (which does not result in a fixed point) only one type variable has to
increase. Secondly, since the numerical values of the external type parameters
are unknown, iterations have to be performed with the matrix C by raising it to
a power (using function composition as multiplication and ⊕ as addition). This
by itself is a costly operation, to perform even once.

We propose a more efficient algorithm, based on the algebraic path problem,
which we consider next.

Algebraic structure of F Recall that the elements of the constraint matrix are
drawn from the set F of nondecreasing functions Z

∞ → Z
∞ that yield −∞

on all x < 0 and +∞ on sufficiently large x ≥ 0. Consider a six-tuple Φ =
(F,⊕,*, ∗,0,1) where ⊕ is as defined above, * : F × F → F is a function
composition, ∗ : F → F is Kleene’s star operation:

f∗ = 1⊕ f ⊕ (f * f)⊕ (f * f * f) ⊕ . . . ,

0 ∈ F is as defined above and 1 ∈ F is the identity function3: 1x = x for x ≥ 0,
1x = −∞ otherwise.

Proposition 3.1. ⊕, * and ∗ are closed in F.

Indeed, the ⊕ operation is closed in F since the point-wise maximum of two
nondecreasing functions is a nondecreasing function, whose carrier is included
in the union of the carriers of the arguments and so is finite. Likewise, the
composition of two nondecreasing functions is a nondecreasing function. The
behaviour of this function at negative arguments and ±∞ is proven immediately
by substitution; the carrier of the result is the same as that of the first operand,
so * is closed in F.

Finally, the star operator is defined in terms of the fixed point of a series,
each member of which is computed from elements of F using the operators ⊕
and *. Since they are both closed in F, the star operator itself is closed in F if
the fixed point exists. The fixed point does exist, since the series of partial sums
is point-wise nondecreasing and since Z

∞ includes +∞. In fact, we will show
below that the fixed point can be computed in a finite number of steps by an
efficient algorithm, which means that the series for the star operator is always

3 Strictly speaking the identity function is not in F since it does not have a finite
carrier; nor is 0. However, we include them in F as special elements. The use of both
1 abd 0 with ⊕, � and ∗ does not lead to further infinite-carrier elements.
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finite for any element of F. This obviates the proof that the star construct is well
behaved; such a proof would usually be required for an infinite star series. ‡
Proposition 3.2. (F,⊕,0)and(F,*,1) are monoids, the former is commuta-
tive. Indeed, function composition is associative and so is point-wise maximum.
The elements 0 and 1 are obviously the identities of the respective operations. ‡
Proposition 3.3. Operation * distributes over ⊕ both on the left and on the
right:

a* (b ⊕ c) = (a* b) ⊕ (a * c) and (b ⊕ c) * a = (b * a) ⊕ (c* a) .

The proof is by point-wise application, using the nondecreasing nature of func-
tions a, b and c. ‡
Proposition 3.4. 0 is a null with respect to *: 0 * x = x * 0 = 0 The proof
follows immediately from the construction of the element 0. ‡

Propositions 3.1-4 form the proof of the following

Lemma 3.5. Φ is a star semiring.

Inference procedure Now consider the constraint satisfaction problem again. Let
us associate every type variable with a vertex of a weighted, directed graph G.
Each edge (vi, vj , f) of the graph represents the constraint

vi ≥ f vj .

Since the (internal) program variables occur in both covariant and contravariant
contexts, the graph is not necessarily acyclic, and may contain infinite as well as
finite walks. Each walk corresponds to a chain of primary constraints connecting
its ends, and hence to a secondary constraint corresponding to the (finite or infi-
nite) *-product of the weights of the participating edges. The tightest constraint
between any types vi and vj due to the primary constraint set is the ⊕-sum of
the weights of all walks Wij in graph G from vertex i to vertex j:

Pij =
⊕

w∈Wij

(
⊙
e∈w

fe) ,

where the selection of edges e from the walk w in the *-product is in the walk
order. This is a formulation of the classical algebraic path problem [8] for the
semiring Φ and graph G.

The solution to the algebraic path problem is the matrix Pij of semiring
values. We will define an efficient algorithm for its computation below. For now
let us assume Pij has been computed, and proceed to the type assignment.

Proposition 3.6. Divide the set of type variables {vk | 1 ≤ k ≤ n}, into external
ones k ≤ ne, which correspond to the program variables from the parameter
tuple of the function, see figure 2 (and which consequently are not subject to type
assignment) and the rest ne < k ≤ n. The least type assignment is given by the
following formula:

vk = min
v∗

k

{x | x ≥ nemax
i=1

(Pki vi)} = Pkk *
nemax
i=1

(Pki vi) ,
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where v∗
k is the set of solutions of the equation x = Pkk x. The outline of the

proof is as follows. First of all, observe that any type assignment for the variable
vk has to satisfy the secondary type constraint vk ≥ Pkkvk. Since Pkk ≥ 1 point-
wise (since at any rate vk ≥ vk), only the fixed points of Pkk are suitable as
potential type assignments for vk. Secondly, vk must be large enough to satisfy all
primary and secondary constraints induced by the external types, which explains
the above formula. The third part of the equation is due to the fact that Pkk is
the point-wise maximum of all cyclic chains on vertex k, hence Pkk *Pkk = Pkk

and so, for all x ∈ Z
∞, Pkk(Pkk x) = Pkkx. This means that Pkkx is a fixed

point of Pkk. The fact that this fixed point is the least one greater than or equal
to x is due to Pkk ≥ 1 point-wise and to its nondecreasing nature.

One might think that vk must be large enough to satisfy the constraint in-
duced by any other internal variable vj : vk ≥ (Pkjvj). We claim that this happens
automatically. Indeed, assume the contrary, i.e. that for some j, vk < (Pkjvj).
By the above assignment vj ≥ Pjj * Pjivi (recall that Pjj is a nondecreasing
function, so it distributes over the maximum), and so vk < Pkj * Pjj * Pjivi

for any external vi. The right-hand side reduces to Pkivi by definition of P and
semiring distributivity. Hence vk < Pkivi, which contradicts our type assignment
and proves its validity. ‡

4 Implementation

The type inference method proposed in the previous section requires the ability
to compute the algebraic path matrix Pij efficiently. This is achieved by Kleene’s
algorithm in O(n3) semiring operations using the following iterative process. Set
the initial value P

[0]
ij according to the primary constraint graph. For any edges

(i, j) not found in the graph set P
[0]
ij = 0. For k = 1 . . . n do:

(∀i, j)P [k]
ij = P

[k−1]
ij ⊕ (P [k−1]

ik * (P [k−1]
kk )∗ * P

[k−1]
kj )

The solution is Pij = P
[n]
ij .

At each iteration, the algorithm requires 2n2 semiring multiplications and n2

semiring additions as well as one star operation. We consider the implementation
of those next.

We propose the representation of semiring elements as sorted lists of pairs
(a, v) where a ≥ 0 is the value of the function argument and v is its result.
The list is sorted in the ascending order of a. The value of the function for the
arguments greater than the last one listed are assumed to be +∞. The empty
list corresponds to the maximum element of Φ, φmax: (∀x ∈ Φ)x⊕φmax = φmax.
The elements 0 and 1 are represented as special values recognised by all three
operators.

It is easy to see that the * operation in this representation is little more
than the classical database join of the operands equating the v field of the first
operand and the a field of the second; it yields a sorted list as a result. Both
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source lists are only traversed once, thanks to the nondecreasing nature of the
semiring elements and the fact that any emerging lists are already sorted. The
⊕ operator is implemented as a join in the field a of both lists followed by the
pointwise maximum of the corresponding v fields. Of course the a field does not
even need to be stored, as it contains merely the sequential number of the list
element.

The star operator is slightly trickier to implement. Observe that since ⊕ is
idempotent (i.e., (∀x ∈ Φ)x ⊕ x = x), (f ⊕ 1)∗ = f∗, which can be proven by
substitution. Hence without any loss of generality we can assume that f x ≥ x
for all nonnegative x. The first step is to identify closed intervals of x, [bi, ei]
such that:

f (bi − 1) ≤ bi − 1,
f k > k for bi ≤ k < ei and
f ei = ei.

If no such interval exists, it is easy to see that f x = x for all x ≥ 0, in which
case f∗ = f = 1. Indeed, since for any f ∈ Φ, f(−1) = −∞ and f(+∞) = +∞,
there is at least one suitable pair of ei and bi. Hence the middle condition is not
satisfied, which means that for all k f k ≤ k, hence f ⊕ 1 = 1.

In the general case, the carrier of f is partitioned into one or more closed
intervals of the above sort with possibly intervals where f x ≤ x occurring in
between those. We then apply the following

Proposition 4.1. Within each interval [bi, ei], f∗ x = ei.

Indeed acting f on any point within the interval will produce a greater result
not exceeding ei (which is the value of a nondecreasing function at the right
end of the interval where it is nondecreasing, hence the maximum). Therefore,
repeated application of f will eventually reach ei which is a fixed point.

The star algorithm should consequently proceed in two passes. In the first
pass, the closed intervals are identified by scanning the list and comparing the
current and previous elements. At the same time any elements for which v < a
are adjusted to v = a. In the second pass, the answer is computed by filling up
the intervals with their final value of a. This is best accomplished by placing
the list elements on top of a stack during the first pass, and reading them off
the top of the stack in the second, so that the ends of intervals could propagate
backwards.

One last observation: in the previous section we stated that f∗ maps any x
to the nearest fixed point equal or exceeding x. Clearly our algorithm has this
property.

From the description of the semiring algorithms, it is clear that their compu-
tational cost is O(L) where L is the length of the longest chain in the subtyping
system. An obvious optimisation would be to exploit the fact that there are
usually much fewer instances to an operator than there are different subtypes in
a type. Consequently, the type maps are likely to be step functions with many
different a corresponding to the same v. The above algorithms can easily be
modified for such functions: only the first record with the same v need be kept,
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the join algorithm must compare for ≥ instead of equality, etc. As a result the
computational cost of semiring operations could be reduced to O(V ) where V is
the maximum number of overloadings defined for any operator in the program.

5 Linkage

The inference procedure described in Section 3 delivers the subtypes of all vari-
ables (including the function result) in terms of the types of the function pa-
rameter tuple. It can only do that if the subtype transformation of all function
applications in the function body is known. If recursive functions are not present,
this is easily achievable as the invocation graph for the program is acyclic, and so
functions must exist that call no further functions. Inference starts with those.
When their subtype signatures (the mapping of the parameter tuple types onto
the function result type) becomes known, they can be used to perform subtype
inference in functions that depend on those, etc., until inference for the whole
program is complete.

Recursive functions can be included into the subtype inference framework by
applying the following fixed-point calculation.

1. Assume that each function Fj : (p1, . . . , pmj
) → tj returns the lowest subtype

of the corresponding supertype: tj = maxk fjkpk with all fjk = f
[0]
jk = 0

2. Perform subtype inference in each of the bodies using the above assumption
for any function applications occurring in it. The result is a new approxima-
tion f

[1]
jk .

3. Iterate step 2 until (∀jk)f [m+1]
jk = f

[m]
jk

The existence of the fixed point follows from the fact that the ”sum of prod-
uct” formula for Pij from Proposition 3.6 is monotonic with respect to all fi.
Indeed, define partial order on Φ thus: f1 " f2 iff f1⊕f2 = f2. Then using semir-
ing distributivity show that for any edge k, its weighting fk, and any semiring
element f , if fk " f then (∀ij)Pij(fk) " Pij(f). Informally, this means that if a
type function f is replaced by a pointwise same-or-higher function, this can only
make any other type function in the constraint set pointwise same-or-higher.
This, of course, automatically guarantees a fixed point if the codomain of all
type functions here is finite, which is the case.

Note that the fixed-point procedure does not necessarily require a repeated
solution of the entire algebraic path problem. Each iteration only changes weight-
ings on a few edges corresponding to function applications. The other edges that
correspond to the operator applications retain their weightings, and in any prac-
tical program these would be the majority. Consequently, one can introduce a
vertex enumeration that leaves all function-application vertices at the end. Only
those vertices will require Kleene’s algorithm iterations to be re-done, thus giving
a cost estimate of O(mn2) + n3, where m + n is the number of type variables
associated with function applications in the expression tree. In a practical sys-
tem this estimate can be reduced further by taking into account the locality of
type dependencies in the abstract syntax tree.
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6 Discussion and Related Work

The issue of type inference with atomic subtyping has a long history. We cite
papers [1, 2, 6, 9, 7] as ones where foundation work was done. Of these, paper [7]
is probably the most relevant as it tackles the issue of decidability of general
type inference in the presence of subtyping, but it does not bound its cost.
The main thrust of our work is towards homomorphism of types and effective
constraint-satisfaction algorithms that make type inference possible. This issue
was not approached systematically until a simplified theory was given by us in [4].
Our concept of type homomorphism is consonant to Lievant’s idea of “discrete
polymorphism” proposed in [3], where it was suggested that overloadings should
be treated as models of a single theory. We believe that h-overloading is less
restrictive as it allows higher instances to “expand” the functionality of the
lower ones without destroying the consistency between them.

Technically, the most relevant to our work could be the paper by Rehof and
Mogensen [10], where a method is described for what they termed a “definite
constraint satisfaction problem”. Here all constraints are presented in a form
similar to ours: v0 ≥ f(v1, . . . , vk), where f is a nondecreasing function. Then
an algorithm is presented, with a complexity linear in the number of constraints,
(i.e. quadratic in the number of variables n) which finds the least solution. The
main difference is that in [10] the system of constraints is assumed to be closed,
i.e. all variables are subject to type minimisation within the constraints. In the
present paper, we approach a more general problem of constraint satisfaction
with unknown external parameters, which are types of the external variables
that are not subject to minimisation. In our case, the solution is a function of
those types. The algorithm from [10] does not apply to such situations. We have
proposed a slightly more costly solution, with the cost O(n3), but which allows
external types to be parameters in the type assignment.

7 Conclusions

A type inference solution for a general first-order, atomic subtyping with ho-
momorphic overloading has been proposed. We have shown that after archetype
checking, an h-overloaded operator produces type constraints characterisable by
nondecreasing functions on the expanded integer set. A star semiring Φ was pro-
posed to capture algebraic properties of such functions. Using Φ, we have built a
type inference procedure based on Kleene’s algorithm. The procedure infers the
least types of all internal variables in the program as explicit functions of the
external types.

Future work will proceed towards introducing homomorphic subtyping to
SAC and implementing the subtype inference algorithm. More thought is re-
quired to improve the efficiency of linking, perhaps by using some heuristics for
the first approximation. It would also be interesting to tackle higher-order func-
tional subtyping for which the present technique is not immediately applicable.
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